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ABSTRACT

Recently a number of nonlinear precoding algorithms have
been developed for designing a downlink transmit signal that
is constrained by some nonlinearity, such as one-bit quantiza-
tion, power-amplifier saturation or constant modulus. These
methods use iterative search algorithms to directly design the
signal that is transmitted from each antenna. Since the dimen-
sion of the search space equals the number of antennas, the
computational complexity of these approaches can be high for
massive MIMO scenarios. Thus, in this paper we pose the
problem in a smaller dimensional space by constraining the
signal prior to the nonlinearity to be the output of a linear pre-
coder. The search is then over the vector of predistorted sym-
bols at the input to the linear precoder, which is typically much
smaller than the number of antennas. We focus on algorithms
that minimize the bit error rate at the receivers, and show that
performance can be obtained that is similar to algorithms that
operate directly in the antenna domain.

Index Terms— one-bit quantization, constant modulus,
massive MIMO, linear precoding, per-antenna power con-
straints, minimum probability of error precoding

1. INTRODUCTION

There are a number of situations in which the signal transmit-
ted by a given antenna is constrained in some way. The most
common type of this constraint is a per antenna power con-
straint, in which the amplitude of the signal cannot exceed a
certain value, due for example to saturation in the power am-
plifier (PA). In other situations, to maximize the energy effi-
ciency of the PA, one may wish to constrain the transmit signal
to have a constant modulus. Another example that has recently
gained attention is the use of a low-resolution (e.g., one-bit)
digital-to-analog converter (DAC), which limits the transmit
signal to one of only a finite number of possibilities.
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Linear precoding schemes are not directly compatible with
such constraints, since the precoder output will in general not
satisfy them. A simple approach to dealing with this situa-
tion is to use a linear precoder anyway, and then project its
output onto the nearest constrained signal. This approach has
recently been used for the case of one-bit DACs in [1–3]. Its
performance was analyzed in [3] for the zero-forcing precoder,
and was found to perform reasonably well as long as the ra-
tio of the number of antennas to the number of receivers was
large enough. However, direct nonlinear design methods that
take the one-bit constraint into account when designing the
transmit signal vector have been shown to perform consider-
ably better. Some examples include [4–6] for one-bit DACs
and [5, 7–13] for constant modulus signals. For per-antenna
power constraints, most prior work has focused on linear pre-
coders [14–20], although direct design of the transmit vector
has recently been considered for this problem as well [21].

The primary drawback of these direct nonlinear design ap-
proaches is their computational complexity. First, they are
symbol-level precoders, which means that an entirely new pre-
coding must be designed for each set of transmit symbols; this
is in contrast to linear precoders, which remain fixed during
the coherence time of the channel. Second, they require iter-
ative algorithms in a search space of dimension equal to the
number of antennas, which can be very large in the case of
massive MIMO systems.

In this paper, we focus on the massive MISO downlink
in which a basestation (BS) with a large number of antennas
transmits PSK symbols to a number of single antennas users.
The method we will present also requires symbol-level pre-
coding, but it operates in a space whose dimension is equal to
the number of users, which is typically much smaller than the
number of antennas. The algorithm operates like the methods
above that simply project the output of a linear precoder onto
the constraint space, but it attempts to predistort the signals
in order to find a better linear precoder output before the con-
straints are applied. In particular, the algorithm adjusts the in-
put to the linear precoder to minimize the worst-case bit error
rate (BER) at the users, where the minimum BER criterion is
achieved by maximizing the “saftey margin” described in [6].
The minimum BER criterion has also been used in “construc-
tive interference” precoding [13, 22, 23].

In the next section we present our data modeling assump-
tions, and in Section 3 we define the safety margin metric for
minimizing the users’ BER. Section 4 then provides details of
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the algorithm, followed by the results of several simulations in
Section 5 that illustrate its performance.

2. DATA MODEL AND ASSUMPTIONS

We assume a flat fading downlink scenario with anM -antenna
BS and K single antenna user terminals. We will focus on a
massive MIMO scenario in which M � K, although neither
this nor the flat fading assumption is strictly necessary for the
proposed methods. We make no assumptions regarding the
K×M channel matrix H other than it is generically full rank.
We let theM -element vector x represent the transmitted signal
at the BS, so that the downlink data model can be represented
as

r̂ = Hx+ n , (1)

where the k-th element of r̂, denoted by r̂k, represents the
signal received by user k, and n is a vector whose K elements
are independent identically distributed (i.i.d.) Gaussian noise.
We will denote r = Hx as the noise-free version of r̂.

In standard linear precoding, x is given by the product of
the K × 1 vector of symbols s that the BS desires to send to
the users times an M ×K precoder P; i.e., x = γPs, where
the scalar γ is chosen to meet an average power constraint.
Common precoding approaches include maximum ratio trans-
mission P = HH and zero-forcing (ZF) P = HH(HHH)−1,
where (·)H denotes the conjugate transpose. In this paper, we
will assume that the elements of x are constrained in some
nonlinear way to lie in a certain setX due to hardware require-
ments that prevent the use of standard linear precoding. Some
examples of such constraint sets X are listed below in terms
of the constant ρ, which is chosen to satisfy power constraints:

• Low-Resolution DACs: In this case, the elements of x
are the outputs of coarse quantizers, and thus they are
restricted to lie at certain fixed constellation points. For
example, in the case of a one-bit quantizer, we have
xi =

√
ρ
2 (±1± j).

• Saturation Nonlinearity: Here the amplitude of the el-
ements of xi cannot exceed a certain value due, for ex-
ample, to PA saturation: |xi| ≤

√
ρ.

• Constant Modulus: To maximize the energy efficiency
of the PAs, in some cases the transmit signal may be
constrained to be at the peak power level for all anten-
nas: |xi| =

√
ρ.

As explained above, several methods have recently been devel-
oped to design transmit vectors x that satisfy these constraints
and optimize some performance criterion. These methods rely
on iterative algorithms in an M -dimensional space, and they
often make use of relaxation techniques. When M is large as
with massive MIMO, the computational complexity of these
algorithms may be prohibitive.

An alternative and very simple approach to designing x is
to simply project the output of a standard linear precoder onto

the constraint set: x = Q(Ps), where the function Q(·) rep-
resents the nonlinear constraint. The performance of this ap-
proach was studied in [3] for the case of one-bit DACs, where
it was shown that reasonably good performance can be ob-
tained when the ratio M/K is large enough. It was shown
in [24] that improved performance can be obtained by predis-
torting the symbols in a certain way prior to the nonlinear-
ity: Q(P(s+ ε)), although the predistortion in [24] was made
in an ad hoc way. Here we study a more systematic method
for perturbing the symbols that allows this method to achieve
performance similar to the direct design methods that require
an M -dimensional search. The advantage of the perturbation
approach is that the search for the predistortion ε is only of
dimension K, which is normally much smaller than M .

3. MINIMUM BER METRIC FOR PSK

We will assume in this paper that the elements of s are drawn
from a D-PSK alphabet, i.e., sk = exp(jπ(2d + 1)/D) for
some d ∈ {0, · · · , D − 1}, although the methods we present
can be generalized to other constellations. At the user ter-
minals, the received signal r̂k is compared with the D-PSK
symbol boundaries, and the closest symbol in the constella-
tion is taken to be the transmitted signal. Thus, rk need not
be “close” to sk to be decoded correctly, it just must lie in the
correct decision region. In fact, for PSK, a lower BER is ob-
tained when |rk| can be made to increase well beyond |sk| in
a direction that is farther removed from the decision bound-
aries. As mentioned above, this idea has been referred to as
constructive interference precoding in other work [13, 22, 23],
and used for symbol-level precoder design. The approach we
take here however is different.

To describe the BER metric, we define S = diag(s) and
follow the approach of [6] by rotating the coordinate system
of the received data:

z = SHr = SHHx = H̃x ,

where we have defined H̃ = SHH. Since S is unitary, this
will have no impact on the distribution of the Gaussian noise
when it is present. If the design of x is successful, then the
elements of the vector z will all lie in a 2π/D pie-shaped re-
gion centered on the horizontal axis, as depicted in Fig. 1. The
quantity δk represents the “safety margin,” or the distance of
the received sample zk from the decision boundary, and is de-
fined as

δk = zkR sin θ − |zkI | cos θ , (2)

where θ = π/D, and zk = zkR+jzkI is the decomposition of
zk into real and imaginary parts. The larger δk, the smaller the
BER. Thus, our approach to designing x will be to maximize
the worst case δk over all the users k ∈ K = {1, · · · ,K}:

δ = argmax
x∈X

min
k∈K

δk . (3)
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Fig. 1. Safety margin for received data at user k.

4. MINIMUM BER PREDISTORTION PRECODING

The algorithm of [6] maximizes (3) for one-bit quantization
using a relaxed box constraint, which allows for a linear pro-
gramming solution. The resulting solution is then mapped
onto the nearest quantization points

√
ρ
2 (±1 ± j). The lin-

ear programming search is over x, which is of dimension M .
In the method we propose, we take a different approach by as-
suming that x = Q(P(s + ε)) for some fixed linear precoder
P that depends only on the channel and not s. The advantage
of this approach is that the optimization of (3) will be over the
predistortion vector ε, which is only of dimension K �M .

The proposed approach uses an approximate stochastic
gradient descent method to update ε and increase δ. Instead
of computing the discontinuous gradient with respect to the
nonlinearity Q(·), the function Q(·) is ignored and the gradi-
ent is computed as if it were not present. At iteration p, the
approximate gradient, denoted here by ∇̃, is given by

∇̃εδ = ∇̃ε [zkR sin θ − sign(zkI)zkI cos θ]

= ∇̃ε

[
(eT

k H̃x)R sin θ − sign(zkI)(eT
k H̃x)I cos θ

]
= ∇̃ε

[
(eT

k H̃Q(Pε))R sin θ − sign(zkI)(eT
k H̃Q(Pε))I cos θ

]
≈ ∇̃ε

[
(eT

k(p)H̃Pε)R sin θ − sign(zkI)(eT
k H̃Pε)I cos θ

]
≈ PHH̃Hek (sin θ + jsign(zkI) cos θ) , (4)

where index k denotes the user with the worst case δk, ek is
a vector with a one in position k and zeros elsewhere, and the
subscripts R and I again denote the real and imaginary parts,
respectively. The first approximation ignores the nonlinearity
Q(·), and the second assumes we never evaluate the gradient
at zkI = 0. In addition to the errors caused by these approx-
imations, taking a step in this direction may also cause the
worst-case user index, and hence the approximate gradient, to
change. These factors result in a relatively large misadjust-
ment error, but also tend to allow the algorithm to escape from
local minima and better explore the solution space. As such,
the stopping criterion is not based on the norm of the gradi-
ent; the algorithm keeps track of the ε iterate that produces the

largest value of δ during the search, and then takes this as the
solution after a fixed number of steps.

In the sequel, we will refer to the algorithm as Reduced Di-
mension Minimum BER (RedMinBER) precoding. A detailed
description of the algorithm is given below.

1. Given s, H̃,P, number of iterations Np, and stepsize µ,
set p = 1 and ε(1) = 0.

2. Calculate z = H̃Q(Ps) and δ(1) from (2)-(3).
3. Set sopt = s and δopt = δ(1).
4. For p = 1 to Np, do

(a) Find ε(p+ 1) = ε(p) + µ∇̃∗εδ(p).
(b) Calculate z = H̃Q(P(s+ε(p+1))) and δ(p+1).

(c) If δ(p+1) > δopt, set δopt = δ(p+1) and sopt =
s+ ε(p+ 1).

5. Output solution sopt.

The bulk of the computational load for RedMinBER is
the calculation of z at each step, but this requires a mini-
mal amount of effort for the following two reasons: (i) since
only one element of ε(p) changes at each iteration, updat-
ing P(s + ε(p)) only takes O(K) operations; (ii) the adjust-
ments to ε(p) at each iteration are relatively small, so in many
cases (e.g., for one-bit DACs) the number of terms, say M̃ ,
in Q(P(s + ε(p))) that actually change their value from one
iteration to the next will often be small. Computation of the
gradient approximation is trivial since H̃P only needs to be
calculated once, and the gradient is just a scaled version of
one of its rows. Thus, the overall computation is O(M̃K) per
iteration, where typically M̃ � M . This compares favorably
with the linear programming method of [6], which requires
O(M3) operations per iteration. On the other hand, due to the
discontinuous nature of the nonlinear transmit constraints and
the resulting approximate gradient ascent method, RedMin-
BER will require a larger number of iterations. In the exam-
ples presented in the next section, about 2M iterations were
required to get the best results. Still, even with this larger
number of iterations, the overall computational load of Red-
MinBER is still significantly less than optimization methods
that operate directly on x.

5. SIMULATION EXAMPLES

For the simulation results presented here, we assume a base-
station with M = 128 antennas serving K = 16 single-
antenna users. We will consider two of the three types of
transmit signals described in Section 2: one-bit quantized and
constant modulus (CM) signals. In each case, the per antenna
power is equal to ρ. The channel H is composed of circular
complex independent identically distributed (c.c.i.i.d) Gaus-
sian random variables with zero mean and unit variance. The
additive noise at the receivers is also c.c.i.i.d Gaussian with
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zero mean and unit variance, and thus the SNR seen at the re-
ceivers is 10 log10 ρM dB due to the array gain. We will let s
be composed of QPSK symbols, and thus θ = π/4. Our per-
formance metric is the symbol error rate (SER) averaged over
all trials and over all users. The ZF precoder will be used for P
in both examples. The proposed algorithm was implemented
with µ = 0.005 and Np = 250.

In the first example, we study the case of one-bit DACs.
Figure 2 shows the SER as a function of the SNR at the
receivers for standard (unquantized) ZF, quantized ZF (the
method studied in [3]), the linear programming approach
of [6], and the RedMinBER method proposed here using
quantized ZF as the initialization. We see that RedMinBER
achieves performance similar to, and at higher SNRs even
slightly better than, the more complex linear programming
method. Fig. 3 shows the value of δ averaged over 2000 chan-
nel realizations as a function of the number of RedMinBER
iterations for an SNR of 4dB. We see that on the order of
250 iterations are needed on average for convergence, which
results in an increase in δ from about 10 to 17. The resulting
gain in dB is 20 log10(17/10) = 4.6dB, which matches the
improvement achieved by RedMinBER over quantized ZF
observed in Fig. 2 at 4dB SNR. The number of iterations can
likely be reduced by replacing the fixed-step-size approach
with some type of line search, albeit with an increase in the
complexity per iteration.

Fig. 4 shows results for the case where x is constrained
to be CM. In addition to RedMinBER, the SER is plotted for
standard ZF, “ZF-CM” which refers to standard ZF with its
output mapped onto the unit circle to enforce the CM con-
straint (similar to quantized ZF in the previous example), and
the CVX-CIO method of [23], which minimizes the BER as
in (3) but over the entire transmit vector x with the relaxed
constraint |xi| ≤ ρ. Once the solution to the optimization is
found, CVX-CIO maps the result onto the unit circle. We see
that CVX-CIO and RedMinBER give essentially identical re-
sults, even though RedMinBER performs the search in a 16-
rather than a 128-dimensional complex space.

6. CONCLUSIONS

This paper has presented a new method for downlink pre-
coding in massive MIMO systems under general types of
constraints on the transmit signals. Unlike methods that di-
rectly design the M -dimensional constrained transmit vector,
the new algorithm searches for a predistortion of the signal
applied to a standard linear precoder prior to application of
the constraint. This search is only of dimension equal to the
number of receivers, which is typically much smaller than
M . Simulations show that the new algorithm achieves per-
formance essentially identical to methods that operate in the
larger-dimensional space, but at a fraction of the computa-
tional cost.

Fig. 2. SER vs. SNR at receivers for one-bit DACs.

Fig. 3. Average change in δ versus number of iterations.

Fig. 4. SER vs. SNR at receivers for CM signals.
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