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ABSTRACT

This paper considers compressed sensing (CS) in the context of
RF spectrum sensing and presents an efficient approach for learn-
ing hardware nonidealities in an analog-to-information converter
(A2IC). The proposed methodology is based on the learned it-
erative shrinkage-thresholding algorithm (LISTA), which enables
co-optimization of the hardware and the reconstruction algorithm
and leads to a model-free recovery approach that is optimally tuned
for the unique computational constraints and hardware nonidealities
present in the RF frontend. To achieve this, we devise a training pro-
tocol that employs a dataset and neural network of minimal sizes.
We demonstrate the effectiveness of our methodology on simulated
data from a model of a well-established CS A2IC in the presence
of linear impairments and noise. The recovery process extrapolates
from training on 1-sparse signals to recovering the support of sig-
nals whose sparsity runs up to the theoretical optimum for ℓ1-based
algorithms across a range of typical operating SNRs.

Index Terms— Compressed Sensing, Artificial Neural Net-
work, LISTA, Spectrum Sensing, Analog-to-Information Converter

1. INTRODUCTION

Compressed sensing (CS) theory [1–4] asserts the existence of
schemes for sensing structured signals that are vastly more efficient
than the state-of-the-art in numerous applications, but translat-
ing these theorems into nontrivial improvements in key metrics
has proved challenging. One particularly promising application
area is spectrum sensing [5], where CS-based RF frontend re-
ceivers have surpasssed classical scan time vs. energy consumption
tradeoffs [6–9] and could become a key enabling technology for
cognitive-radio-based [10] dynamic spectrum access. Two chal-
lenges that have hindered general adoption of these designs are
(i) the difficulty of efficiently implementing both greedy and itera-
tive reconstruction algorithms in hardware, and (ii) the sensitivity
of reconstruction algorithms’ performance to deviations from the
nominal design in the A2IC hardware. Point (ii) is a more general
case of the well-studied issue of basis mismatch [11, 12], and thus
signal reconstruction algorithms that are robust to linear and nonlin-
ear impairments are essential. As to issue (i), we note that greedy
algorithms for sparse recovery such as the orthogonal matching pur-
suit (OMP) [13, 14] require the computation of subspace projection
operators on each iteration, which is impractical for IC implemen-
tation, whereas iterative algorithms such as basis pursuit can be
incompatible with the non-negotiable constraints on slot times and
computational resources that are a fundamental part of ICs for spec-
trum sensing. An ideal recovery algorithm would offer optimized

performance subject to the particular constraints imposed by one’s
application and admit an efficient hardware implementation for use
in real-time systems.

To address issues (i) and (ii) and move towards robust and
hardware-feasible implementations of CS reconstruction algorithms,
we propose an efficient signal reconstruction methodology based on
the learned iterative shrinkage-thresholding algorithm (LISTA) [15].
In LISTA-type methods, a correspondence between sparse recovery
algorithms and artificial neural networks motivates a learning prob-
lem in which input-output data is used to optimize the parameters of
an iterative sparse recovery algorithm truncated to a fixed number of
iterations. The resulting learning problem offers the chance to au-
tomatically adapt the recovery algorithm to hardware nonidealities
through training, while simultaneously being well-justified from the
perspective of numerical optimization: critically, it is in no way a
black-box learning procedure. At the same time, this process pro-
duces a recovery algorithm that requires no matrix decompositions
or inverses and is optimally tuned to the specific computational
budget available in one’s application. Existing studies of the LISTA
method have focused on optimizing certain choices of parameters in
general LISTA networks [16–18], extensions to more complex itera-
tive methods than ISTA [19–21], and adaptations to domains where
different structural priors are present [22]. In contrast, our work
focuses on the development of a hardware-feasible methodology
for applying LISTA to sparse signal reconstruction in the context
of spectrum sensing, and it identifies and exploits LISTA’s ability
to enable model-free adaptivity through the process of optimizing
performance over the training set. To this end, we propose and eval-
uate an efficient training protocol for use with reconstructing sparse
RF signals—since a priori it is unclear how much input-output data
is necessary to produce a robust signal reconstruction algorithm
using the LISTA framework—and demonstrate the ability of the
post-training signal reconstruction algorithm to operate robustly in
the presence of linear circuit nonidealities in simulated data. In
particular, we present numerical evidence that our methodology can
recover near-uniform performance associated with certain ensem-
bles of random matrices when the design matrix is an appropriate
pseudorandom matrix and the system matrix is an impaired version
of the design matrix.

2. SYSTEM MODELING

In spectrum sensing, one is generally interested in obtaining infor-
mation about spectral occupancies of various parts of the RF spec-
trum. In this paper we consider a formulation of this problem that
is amenable to CS techniques, where signals x(t) in a class of sig-
nals S are assumed to be frequency-sparse. In particular, we define
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Fig. 1. Simplified schematic of the Direct RF-to-Information Con-
verter.

S as the set of real-valued, square-integrable signals x(t) satisfying
two properties: (i) the Fourier transform X( f ) vanishes outside of a
known interval F = (− fmax,− fmin]

∪
[ fmin, fmax) and (ii) the support

of X( f ) is a relatively small subset of F . Furthermore, we partition
F into into an even integer N ∈ N disjoint bands, each of width at
most B, and assume that X( f ) is supported on only K ≪ N of these
bands, where K is also even. It will be convenient to define addi-
tional parameters F0 = [ fmin, fmax), N0 = (1/2)N, and K0 = (1/2)K
for working with single-sided spectra in the sequel. We focus on the
case where all distinct bands of X( f ) have equal average power in
our experiments, and for technical reasons we also require N0 to be
odd. Our goal is to recover the spectrum X( f ) from a small number
of random linear measurements by exploiting sparsity.

Our receiver model and experiments target the Direct RF-to-
Information Converter (DRF2IC) [6], which is illustrated in Fig.
1. We study this system due to its superior performance among
receivers of the modulated wideband converter (MWC) type [8, 9]
in terms of scan time and energy consumption, which makes it a
candidate for inclusion in future dynamic spectrum access systems.
Measurements are acquired in the DRF2IC using a pseudo-random
bit sequence (PRBS)-modulated quadrature LO to create a very wide
bandpass RF response with a 3dB bandwidth extending from fmin to
fmax. This mixing operation is performed with independent PRBSs
on each of the m system branches to produce m shifted complex
baseband spectrum measurements, which are subsequently low-pass
filtered. All N0 bins of width B from F0 are encoded in these mea-
surements when the PRBSs are suitably chosen—for example, peri-
odic Rademacher sequences of sufficient length are enough. The sys-
tem is designed to oversample the m complex measurement branches
at the digitizer so that the RF frontend’s hardware complexity can be
minimized in exchange for additional digital processing. To this end,
the digitized measurements are multiplied with 2r orthogonal com-
plex exponentials of frequencies that are integer multiples of B to
extract 2r higher order intermediate frequency responses in addition
to the response at DC [9]. The total number of measurements thus
produced is m(2r + 1), which we denote as R. The choice of r is
flexible, so that the choice of m essentially determines the sparsity
level of signals in S the system can reconstruct. Standard CS theory
performance guarantees suggest a choice of R ≥ ⌈CK0 log(N0/K0)

⌉
,

where C > 0 is an absolute constant, which has been shown experi-
mentally to be a valid heuristic in this application [9, 23].

One can show in a straightforward manner [9,23] that the model
described above implies a linear relationship between the measured
signal yyy( f ) ∈ CR and the discretized RF signal xxx( f ) ∈ CN0 : for
f ∈ [− fs/2,+ fs/2], one has yyy( f ) = ÃAAxxx( f ). Here the system ma-
trix ÃAA captures the down-conversion, PRBS mixing, filtering, and
branch expansion operations described above, and the number fs de-

notes the ADC sampling frequency reduced by the factor 2r + 1.
Furthermore, the k-th row of xxx( f ) has frequency support offset by
(k− (N0 − 1)/2) fs/(2r+ 1). When impairments are present in the RF
frontend, the map ÃAA is not equal to the ideal design matrix AAA, and the
resulting mismatch presents difficulties for sparse signal reconstruc-
tion algorithms. In this work, we study two types of realistic system
impairments in a simulation environment. The first is determinis-
tic relative phase shifts in the PRBSs by less than half of the PRBS
switching frequency, which arise due to unavoidable circuit design
limitations and pose problems for CS A2ICs that perform branch
expansion. The second is frequency-independent gain and phase im-
balances in the downconversion hardware. It can be shown that both
of these types of impairments act linearly on the design matrix AAA, so
that

yyy( f ) = L [AAA] xxx( f ), f ∈ [− fs/2,+ fs/2] (1)

accurately models the measurement process, whereL is an unknown
linear operator on the set of R × N0 matrices with complex entries
that we assume is intrinsic to each instance of the DRF2IC. We will
demonstrate that our LISTA-based reconstruction algorithm is robust
to the action of L when the operator implements the nonidealities
described above and signals are drawn from S.

3. LISTA-BASED SIGNAL RECONSTRUCTION

We now present an efficient LISTA approach for finding a sparse so-
lution to the linear system (1) given the design matrix but no knowl-
edge of the operator L. For a fixed discretized complex baseband
signal xxx ∈ CN0 , assumed stationary and corresponding to the com-
plex baseband representation of a time signal x(t) of the class S, we
collect p noisy time-domain samples yyy j = ÃAAxxx j + nnn j, j = 1, . . . , p,
where nnn j ∼i.i.d. N(000, σ2IIIR) and the samples take values in CR. It
will be convenient to assume that maxi∈[R], j∈[p] |yi j| = 1, which fixes
a σ2-independent scale for our measurements and can be achieved
in hardware with proper amplification. Given a receiver model AAA, a
natural optimization formulation for this inverse problem is the so-
called basis pursuit denoising (BPDN) model [24]:

minimize
XXX∈CN0×p

1
2 ∥AAAXXX − YYY∥2F + λ ∥XXX∥2,1 , (2)

where the j-th column of YYY is yyy j, XXX 7→ ∥XXX∥2,1 is the sum of the ℓ2

norms of the rows of XXX, which encourages the rows of the solution
to (2) to be sparse, and the regularization parameter λ > 0 allows
to control the tradeoff between the regularization of noise and the
enforcement of sparsity. This is a convex problem of type amenable
to solution by the ISTA algorithm [25], whose iterative updates take
the form

XXX(k+1) = prox λ
L ∥ · ∥2,1

(
1
L AAA∗YYY + (III − 1

L AAA∗AAA)XXX(k)
)
. (3)

Here L = ∥AAA∥2 is a Lipschitz constant for the gradient of the smooth
term in (2) and the proximal mapping has the convenient form

eeeT
i prox λ

L ∥ · ∥2,1
(XXX) =

(
1 − λ

L∥eeeT
i XXX∥2

)
+

eeeT
i XXX; (4)

see e.g. [26]. When AAA = ÃAA and the matrix ÃAA is drawn from an ensem-
ble of matrices satisfying a condition such as the restricted isometry
property [27], the (right) unitary invariance of the norms involved
in (2) implies that solving (2) recovers the spectral occupancies of
sparse signals x(t) with high probability if p is sufficiently large, λ is
set appropriately and the noise is not too strong [28].
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In practice, the assumption that AAA = Ã̃ÃA is often unreasonable,
and thus the algorithm prescribed by (3) may fail to recover sparse
measurements from Ã̃ÃA. To address this, the LISTA algorithm identi-
fies the iterations (3) with the layers of a feedforward neural network
and proposes to truncate the iterations after a fixed number of rounds
D ≥ 1 and optimize the error over a training set {(YYY i,XXXi)}Ti=1 with re-
spect to AAA. If we choose to optimize the mean squared error and relax
the parameterization in terms of AAA to one in terms of two matrices
WWW and SSS with sizes commensurate with those of AAA∗ and AAA∗AAA, this
procedure amounts to solving the optimization problem

minimize
WWW∈CN0×R , SSS∈SN0×N0 (C)

1
2

T∑
i=1

∥∥∥XXX(D)(YYY i) − XXXi

∥∥∥2
F

(5)

where SN0×N0 (C) denotes the set of self-adjoint complex matrices of
size N0 ×N0, and where XXX(D)(YYY i) is the result of iterating (3) D times
with YYY set to YYY i, XXX(0) fixed as 000, and with (1/L)AAA∗ replaced by WWW and
III − (1/L)AAA∗AAA replaced by SSS . The resulting problem is a recurrent
neural network learning problem for which a critical point can be
approximately computed using a package such as TensorFlow [29]
that facilitates efficient gradient computations. Furthermore, hard-
ware implementation of the learned recovery algorithm requires in
principle little more than addition and multiplication primitives.

4. TRAINING PROTOCOL

To structure the LISTA protocol for recovering signals under the
model (1), one must choose suitable values for the parameters D, λ,
and the dataset {(YYY i,XXXi)}Ti=1. One must also give a recipe for initializ-
ing the parameters of the recurrent neural network. First we remark
that the choice of the parameter D allows the designer to incorporate
hard computational constraints directly and obtain an optimized re-
covery algorithm subject to those constraints. Similarly, coarse prior
information in the form of the design map AAA can be used to initialize
the gradient descent algorithm run on (5). Due to the infeasibility of
tracking the operator norm of the matrix SSS across gradient descent
iterations in hardware, we recommend scaling the initial value of SSS
to have operator norm less than 1 and fixing L to this scaled value
throughout the training.

Design of the composition of the dataset is necessarily more nu-
anced, since it is infeasible to collect a dataset of all possible sup-
port patterns for sparse signals from S. Such a set would have size
at least

∑
k

(
N0
k

)
, where k runs up to approximately R/ log(N0). In

general, however, it is unclear whether uniform performance guar-
antees can be maintained—or recovered, in the case where L is not
the identity—on a structured set of signals such as the sparse sig-
nals without such an exhaustive training regimen. Our experiments
demonstrate that, in the setting we consider, these guarantees can
be recovered in large part using an efficient training strategy: we
propose a dataset of size kN0 for some k ∈ N consisting of measure-
ments of 1-sparse signals xi(t) ∈ S, and ensure uniform composition
of the dataset so that each of the possible 1-sparse signals supported
on one of the N0 subbands of F0 is included in the dataset with mul-
tiplicity k, with independent noise. We fix the SNR of the signals
xi(t) to be 20 dB, and remark that in this regime it generally suf-
fices to choose k = 1, which enhances the energy efficiency of the
training process. Because the model (1) is linear and the matrix ÃAA
is incoherent (under the model of [9, 23] used for our experiments),
adding noise in this manner is roughly equivalent to that used in the
definition of the samples yyy j in section 3. Our protocol may seem to
run contrary to the general intuition in deep learning, but our exper-
iments will support the notion that for recovery of highly structured
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Fig. 2. Probability of detection and probability of false alarm plots
for OMP, LISTA, and proximal gradient descent in the presence of
linear nonidealities over signal SNR. For K0 ∈ {3, 6} we plot the
mean PD and PFA averaged over 200 experiments on independently-
generated signals with SNR swept from −12 dB to 21 dB in steps of
3 dB. Calibrated algorithms are run using unimpaired data.

signals such as sparse signals, a dataset of this size is sufficient at
least in certain regimes of signal parameters.

We describe below some additional parameter selection that is
linked to the geometric regularity of the problem (5). We observe
empirically (c.f. Fig. 4) that performance measured in probability
of detecting an occupied bin in the spectrum is nonincreasing over a
band of values of D from 12 to 30, with deviations at most 3% from
the value at D = 12, and our protocol thus employs a value of 12.
We choose λ to be at the upper end of admissible parameter values
for (2) given that we have fixed D to be relatively small compared to
a typical number of iterations required to converge under the O(1/k)
guarantee of the ISTA algorithm; this decision is further justified
by the rapid convergence of gradient methods for sparse regression
problems [30]. We find experimentally that a value of 0.1 suffices for
DRF2IC data under the specific case of the model (1) we study. All
gradients are computed exactly over the full size T dataset, and in
particular we employ a constant-stepping gradient method with step
size chosen sufficiently small to avoid divergence in function value
of iterates when solving (5).

5. EXPERIMENTAL RESULTS

We present experiments on synthetic data from a model of the
DRF2IC, which is based on the derivation of the system equation (1)
in [9, 23] with modifications for DRF2IC features [6]. We study the
effects of downconverter gain and phase imbalance and PRBS phase
mismatch on the recovery performance of LISTA and OMP across
multiple levels of signal sparsity and signal SNR. All experiments
employ p = 80 samples with R = 18 branch-expanded measure-
ments and N0 = 63 possible signal support bands. Our LISTA
training protocol is implemented in TensorFlow, and we set the
LISTA parameters to D = 12, λ = 0.1 and k = 1, with the SNR and
sparsity level of the training signals set as 20 dB and 1, respectively.
Our system resolves a swath of spectrum from fmin = 2.57 GHz to
fmax = 3.83 GHz, which implies an RF-to-baseband oversampling
ratio of 8, so that the PRBS relative phase shift must fall in the range
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Fig. 3. Probability of detection and probability of false alarm plots
for OMP, LISTA, and proximal gradient descent in the presence of
linear nonidealities over signal sparsity. We fix the signal SNR at 20
dB and plot the mean PD and PFA averaged over 500 experiments on
independently-generated signals with sparsity swept from 1 to R.

{−1,−7/8, . . . ,−1/8, 0, 1/8, . . . , 7/8, 1}. We choose a value of 6/8
for our experiments, and a gain-phase imbalance of (3dB, 30◦) for
the downconverter. Our dataset {(YYY i,XXXi)}N0

i=1 is constructed according
to the procedure in section 4, and in particular is measured by the
impaired system ÃAA.

We initialize the LISTA network appropriately using AAA-derived
parameters and iterate for 700 epochs of gradient descent. The re-
sulting network parameters are then used to reconstruct further mea-
surements from ÃAA of signals in S from outside the training set. We
evaluate performance measured relative to that of OMP and a fast
proximal gradient algorithm applied to (2) with λ = 0.1. For prox-
imal gradient descent and LISTA, we evaluate probability of detec-
tion and probability of false alarm by taking the squared magnitude
of the recovered signal and summing over each measurement’s p
samples to create a length-N0 vector, and then taking the indices of
the elements in this vector with the top K0 + 2 amplitudes to be our
estimate of the support.

Figs. 2 and 3 compare the performance of a LISTA model trained
using input-output data from the system matrix to uncalibrated OMP
and proximal gradient descent algorithms. The results in Fig. 2 show
performance on signals from S having K0 ∈ {3, 6}, and the results in
Fig. 3 are evaluated on signals with SNR fixed at 20 dB. These exper-
iments show that OMP and proximal gradient descent cannot sustain
PD ≥ 0.8 across standard operating conditions in the presence of
linear impairments, whereas LISTA is able to maintain performance
at a level comparable to that of the former two algorithms run on
an unimpaired system. These experiments also demonstrate the ro-
bustness of the LISTA recovery approach in that, similar to standard
CS reconstruction algorithms in the absence of basis mismatch, the
LISTA algorithm shows a controlled drop in performance as the sig-
nal SNR falls to a point where reliable detection is not possible and
the signal sparsity decreases to the point where CS guarantees fail.

It is worth remarking that both OMP and the proximal gradient
descent algorithm lack the calibration process inherent in the LISTA
training process, so that their performance is necessarily diminished
in the presence of the impairment operator L. Nevertheless, the cal-
ibration process necessary to improve the performance of these two
algorithms is laborious and inherently inexact, and furthermore any
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Fig. 4. Comparison of LISTA performance in NMSE against train-
ing parameters. We choose D ∈ {5, 10, 20, 30} and evaluate models
after I ∈ {375, 750} epochs of training on (5) with independent sig-
nals with K0 = 6 and 20 dB SNR. Data points represent NMSE
averaged over a set of 500 evaluation signals.

calibration process used must necessarily grow in time and complex-
ity as new hardware nonidealities are introduced to the model. The
LISTA approach does not suffer from these drawbacks: it is model-
free, and we believe that it will extend readily to compensation of
novel types of linear impairments. Thus, the performance dispar-
ities between these three algorithms should be analyzed from this
methodological viewpoint, and not just a ‘calibration time’ perspec-
tive.

Fig. 4 offers insight into the sensitivity of the LISTA training
protocol to the number of layers D and the number epochs of training
I. These results demonstrate that the NMSE achieved by a 10 layer
network is comparable to that of a 30 layer network. Nonetheless,
the performance gap between the D = 5 network and the D = 10
network illustrates the benefit of choosing D sufficiently large, and
the performance gap between the I = 375 and I = 750 curves for
D = 10 illustrates that the length of training also plays a role.

6. CONCLUSIONS

We have presented an efficient training protocol that enables a
LISTA-based signal reconstruction algorithm to recover general
frequency-sparse signals in the presence of linear impairments. The
protocol requires only a small set of 1-sparse signals to achieve
this level of performance, and the robustness of the LISTA recon-
struction algorithm as we further lower SNR and increase sparsity
suggests applications in other CS systems where manual calibration
times are prohibitive. In the future, it will be of interest to extend
this methodology to cope with weak and strong nonlinear impair-
ments, and to demonstrate its efficacy on signal data collected from
deployed physical systems.
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