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ABSTRACT

This paper considers the problem of distributed state estimation in
an interconnected network, in which there is uncertainty in the true
model. Such uncertainties are due to the possibility of disruptions or
changes in the nominal model. The focus is on the setting in which
the true network model belongs to a set of possible models. Forming
an optimal estimate has high computational complexity in large net-
works and, therefore, this paper treats this problem in a distributed
framework. The key observation is that the estimation quality criti-
cally depends on successful isolation of the true model. On the other
hand, the true model cannot be determined perfectly due to noisy
measurements. Based on these observations, this paper formulates a
composite hypotheses testing problem and provides optimal decision
rules that account for estimation quality and detection performance.
The theory developed in this paper is evaluated via a case study.

Index Terms— State estimation, distributed estimation, model
uncertainty, networks

1. INTRODUCTION

1.1. Overview

Consider the problem of state estimation in an interconnected
network of n agents with m connections between the agents. The
agents are grouped into K interconnected subnetworks that are con-
nected through tie-lines. Figure 1 depicts a network of n = 6 nodes
with m = 7 connections that is divided into K = 2 subnetworks.
We adopt a graph to represent the network, in which the nodes and
edges represent the agents and their interconnections, respectively.
We also define Ak as the set of nodes that belong to subnetwork k,
i.e.,

Ak , {i : node i belongs to subnetwork k} . (1)

To each edge j ∈ {1, . . . ,m} we assign a state parameter denoted
by Xj ∈ R, which can model, for instance, the flow between the
nodes it is connecting. Accordingly, we define X , [X1, . . . , Xm]
as the state vector. The estimation objective is to form an estimate
for X based on the measurements made by (m + n) measurement
units placed at the nodes and edges. We denote the measurements
collected across the network by Y ∈ Rm+n, which are related to
the state parameters via

Y = h0(X) +N , (2)

where h0 captures the networks dynamics and N accounts for
the measurement noise. Corresponding to each subnetwork
k ∈ {1, . . . ,K}, we define Xk as the vector of state parameters
associated with the edges that belong to this subnetwork. Specifi-
cally, Xk = X ◦ 1{Ak}, where ◦ denotes Hadamard product, and
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Fig. 1. Network model with X4 as shared state

corresponding to A ⊆ {1, . . . ,m}, vector 1{A} ∈ Rm is defined
such that

[1{A}]i =
{
1 if i ∈ A
0 if i 6∈ A , (3)

where φ is the empty set. Clearly some state parameters belong to
more than one subnetwork (e.g., X4 in Fig. 1). Similarly, for any
subnetwork k ∈ {1, . . . ,K}, we define Y k as the vector of mea-
surements corresponding to the nodes and edges that belong to sub-
network Ak, i.e., Y k = Y ◦ 1{Ak}. It is noteworthy that the mea-
surements from the tie-lines belong to more than one subnetwork
(e.g., Y7 in Fig. 1). In each subnetworkAk,Xk, and Y k are related
via

Y k = hk0(X
k) +Nk , (4)

where hk0 captures the internal dynamics of subnetwork Ak andNk

is the corresponding measurement noise. Under the condition of
observability, state estimation can be performed independently by
each subnetwork in the network. However, in an interconnected
model, the state vectors for neighboring subnetworks overlap be-
cause of sharing of states corresponding to the tie-lines (e.g., X4 in
Fig. 1). Therefore, performing state estimation in different subnet-
works independently is not necessarily optimal. Specifically, using
independent state estimators for individual subnetworks does not in-
corporate the disparity between the estimates of the shared states.
Another dimension to this state estimation problem is added when
there is the possibility that network dynamics undergo stochastic
changes due to, e.g., changes in network topology or malfunction
in the measurement units. We assume that the nominal model might
change to s ∈ N other possible models such that each subnetwork
remains observable and the tie-lines are unbroken. Under the model
i ∈ {1, . . . s}, the relationships in (2) and (4) change to

Y = hi(X) +N , and Y k = hki (X
k) +Nk , (5)
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respectively. The uncertainty in the true model introduces another
decision-making process to the state estimation problem. Specifi-
cally, the estimation quality strongly hinges on the successful iso-
lation of the true model, while the detection of true model is never
perfect because of noisy measurements. This premise motivates con-
sidering the detection-dependent estimation problems in this paper.
Specifically, by properly selecting cost functions for the shared pa-
rameters estimators, as well as the combined estimation and detec-
tion rules, we formalize a distributed parameter estimation frame-
work and characterize the optimal distributed decision rules.

1.2. Relevant Studies

Distributed state estimation in dynamical models using consensus
based algorithms has been studied in the domains of control theory
[1–4], wireless sensor networks [5–9] and power systems [10–12].
In consensus based estimation algorithms, the nodes or the con-
stituents of the system exchange information among themselves to
converge to a state estimate for the systems. In [8], a distributed
implementation of Kalman filter is studied for a sparse large-scale
system being monitored by a set of sensors. Distributed state esti-
mation under similar settings have been studied as multi-area state
estimation in the power systems domain in [12–16], where the power
grid is divided into several areas to lower the complexity of estima-
tion in large grids. State estimation is performed by coordination be-
tween local estimators and a centralized estimator in [13] and [14].
A distributed approach is adopted in [15] and [16], where the areas
exchange their estimates for the shared states to converge to a com-
mon estimate.

Inference under model uncertainties has been studied in [5–7,17–
21]. In [5] and [6], consensus algorithms that are robust to change
in network topology are developed. Under various uncertainties in
the dynamic model, robust Kalman filter based algorithms are devel-
oped in [7] and [17]. In the context of power systems, in [18–23], the
uncertainties are modeled as line outages. Line outage detection and
topology identification problems are considered in [20], where hid-
den Markov models are used to model the measurements and outage
detection.

In this paper, we consider a state estimation problem in the set-
ting where the true model belongs to a fixed set of possible models.
A similar setting is studied in [18] and [19], where closed-form ex-
pressions for the joint posterior probability of the true model and the
states is developed and utilized for designing optimal outage detec-
tors. Using decoupled strategies for model isolation and state esti-
mation do not ensure optimality, as established in [24] and [25]. For
example, using Neyman-Pearson detection test to identify the true
model followed by optimal estimation does not integrate the imper-
fection in the detection step into the estimator design. In [26] and
[27], optimal joint detection and estimation rules are developed un-
der constraints on the detection power. Specifically, in [27] decision
rules are developed for a binary hypotheses testing problem with un-
known parameters to be estimated under both hypotheses. In this
paper, we consider the problems of distributed state estimation and
true model isolation jointly and model it as an (s+1)-composite hy-
potheses testing problem and provide optimal decision rules under
distributed estimation framework. The decision rules are evaluated
on a network in the case study.

2. ESTIMATION FRAMEWORK

Based on the definitions in Section 1.1, we assume that multiple
states can be shared between any two subnetworks and, a state can
be shared among more than two subnetworks. We assume that noise
N is distributed according to a distribution with a known proba-
bility density function (pdf) fN . The state vector X has a prior
known pdf π. The pdf of the measurement vector Y under model
i ∈ {0, . . . , s} is denoted by fi. Also, we define εi as the prior
probability of hi representing the true model for i ∈ {0, . . . s}. The

structure of the optimal estimator under different models is differ-
ent. Let X̂i(Y ) denote the estimate of X under the model hi. The
closeness of X̂i(Y ) and X can be quantified by the quadratic cost
function

C(X,U) , ‖X −U‖2 , (6)

for any generic estimatorU . The average posterior cost function for
an estimate ofX under model hi, is

Cp,i(U | Y ) , Ei [C(X,U) | Y ] , for i ∈ {0, . . . , s} . (7)

The optimal estimator that minimizes Cp,i(U | Y ) is the standard
Bayesian minimum mean squared error (MMSE) estimator given by

X̂i(Y ) , Ei(X | Y ) , (8)

and the associated posterior estimation cost is

Ĉp,i(Y ) , min
U

Cp,i(U | Y ) . (9)

Since all the subnetworks are observable, the definitions in (7)-(9)
can be accordingly defined for each subnetwork k ∈ {1, . . . ,K},
and under each model hi. Specifically, for subnetwork k, we define
the average posterior cost function under model hi as

Ckp,i(U | Y k) , Ei[C(Xk,U) | Y k] , for i ∈ {0, . . . , s} , (10)

for any generic estimator U ∈ Rm ◦ 1{Ak} of Xk. The optimal
posterior estimation cost for subnetwork k is given by

Ĉkp,i(Y
k) , argmin

U
Ckp,i(U | Y k) , (11)

which is achieved by the local estimator based on the local data Y k

X̂k
i (Y

k) , Ei[Xk | Y k] . (12)

Since forming an optimal centralized estimator can be computa-
tionally complex or unfeasible, we consider a distributed estimation
structure that combines the local estimates from each subnetwork.
Note that forming locally-optimal estimates independently of other
subnetworks can be sub-optimal because it does not incorporate the
dependencies among various subnetworks that have common states.
To circumvent this, and in order to formalize a distributed estima-
tion structure that incorporates the discrepancies between the esti-
mates formed by different subnetworks for the shared states, we also
provide modified posterior cost functions that signify these discrep-
ancies. Specifically, for a generic state estimator Uk

i for Xk under
model hi, we modify Cp,i(U |Y ) in (7) such that the fidelity of the
set of estimators Ui = {U1

i , . . . ,U
K
i } is quantified by the follow-

ing posterior cost function

Rp,i(Ui | Y ) ,
K∑
k=1

Ckp,i(U
k | Y k)

+
1

2

∑
k,l∈{1,...K}

‖(Uk −U l) ◦ 1{Ak ∩Al}‖2 ,

(13)

where the first term captures the aggregate local estimation costs,
and the second term adds a cost associated with the discrepancies
between the estimates of the common parameters provided by differ-
ent subnetworks. Under model hi, for i ∈ {0, . . . , s}, the optimal
posterior cost is given by

R∗p,i(Y ) , min
Ui

Rp,i(Ui | Y ) . (14)
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3. PROBLEM FORMULATION

When there is the possibility that the true model of the network
deviates from its nominal model, the quality of the state estimator
becomes intertwined with the correct isolation of the true model.
Therefore, we formalize the estimation problem of interest, as an
inherently detection-dependent estimation problem, which leads to
solving the following (s+1)-ary composite hypothesis testing prob-
lem:

Hi : Y ∼ fi(Y |X), withX ∼ π(X) , (15)
where hypothesis H0 represents the nominal model, and hypothesis
Hi represents model hi, for i ∈ {1, . . . , s}. Note that decoupling the
problem in (15) into independent detection and estimation problems
does not guarantee the optimal performance because the uncertainty
in the one step is not incorporated into the design in the second step
(for example, Neyman-Pearson based detection followed by optimal
estimation).

3.1. Definitions

Define δ , [δ0(Y ), . . . δs(Y )] as the randomized detection rule
for the problem in (15), where δi(Y ) represents the probability of
the decision in favor of Hi, for i ∈ {0, . . . s}. Let D ∈ {H0, . . .Hs}
denote the decision formed and T ∈ {H0, . . .Hs} be the true model.
Then, the likelihood of forming a decision in favor of Hj when the
true model is Hi is given by

P(D= Hj |T= Hi) =

∫
Y

δj(Y )fi(Y ) dY , for i, j ∈ {0, . . . , s} .

(16)

We define Pmd as the error rate when the true model is not the nom-
inal model

Pmd , P(D 6=T |T 6=H0) (17)

=
1

P(T 6=H0)

s∑
i=1

P(D 6= Hi |T= Hi)P(T= Hi) . (18)

Using the definition of εi and (16), we can rewrite Pmd as

Pmd =

s∑
i=0

s∑
j=0
j 6=i

εi
1− ε0

∫
Y

δj(Y )fi(Y ) dY . (19)

We also define Pfa as the error rate under the nominal model, i.e.,

Pfa , P(D 6=T |T=H0) =

s∑
i=1

P(D= Hi |T= H0) ,

=

s∑
i=1

∫
Y

δi(Y )f0(Y ) dY . (20)

For a set of generic estimators Ui , {U1
i , . . . ,U

K
i }, where Uk

i

is the local estimator for subnetwork k under model Hi for i ∈
{0, . . . , s}, the corresponding estimation cost is given by C(X,Ui).
Note that the estimation cost C(X,Ui) is relevant only when the de-
cision is in the favor of Hi. Therefore, we define Ji(δi,Ui) as the
average estimation cost given that the decision is Hi under hypothe-
sis Hi, i.e.,

Ji(δi,Ui) ,

∫
Y
δi(Y )Rp,i(Ui | Y )fi(Y ) dY∫

Y
δi(Y )fi(Y ) dY

. (21)

The overall estimation cost is defined as the maximum of the average
costs Ji(δi,Ui), i.e.,

J(δ,U) , max
i∈{0,...s}

Ji(δi,Ui) , (22)

where U , [U1, . . . ,Us].

3.2. Optimal Detection-dependent Estimation

In this section, we design the estimation framework for optimiz-
ing the state estimation quality under uncertainty in the true model.
Because of the presence of noise in the measurements, the detec-
tion is not perfect. At the same time, the estimation quality depends
strongly on the detection accuracy of the true model. Therefore, we
aim to jointly design the estimators and the detection rules under the
constraints on error rates Pfa and Pmd, i.e.,

P(α, β) ,


min(δ,U) J(δ,U)
s.t. Pmd ≤ β

Pfa ≤ α
, (23)

where α, β ∈ (0, 1).

Remark 1 (Feasibility). The constraints on Pfa and Pmd can-
not be made arbitrarily small simultaneously because according
to Neyman-Pearson lemma, there exists a minimum feasible value
β∗(α) for Pmd for a given constraint α on Pfa. Therefore, β must
be chosen such that β ≥ β∗(α).

4. STATE ESTIMATORS UNDER MODEL UNCERTAINTY

By using the expansions of Pmd and Pfa in (19) and (20), we can
write the problem in (23) as

P(α, β) =



min(δ,U) J(δ,U)

s.t.
s∑
i=1

s∑
j=0,
j 6=i

εi
1−ε0

∫
Y

δj(Y )fi(Y )dY ≤ β

s∑
i=1

∫
Y

δi(Y )f0(Y ) dY ≤ α

.

(24)

Note that the estimators appear only in the estimation cost J(δ,U),
which allows for decoupling the problem in (24) into two sub-
problems, as stated in the following theorem.

Theorem 1. The problemP(α, β) can be equivalently written in the
following form

P(α, β) =



minδ J̃(δ, X̂)

s.t.
s∑
j=1

s∑
i=0,
i 6=j

εj
1−ε0

∫
Y

δi(Y )fj(Y )dY ≤ β

s∑
i=1

∫
Y

δi(Y )f0(Y ) dY ≤ α

,

(25)

where X̂ , argmin
U

J(δ,U) , (26)

and J̃(δ, X̂) , min
U

J(δ,U) . (27)

The design of the optimal estimators is provided in Theorem 2.

Theorem 2 (State Estimator). The estimator that solves the problem
in (26) is given by

X̂i(Y ) = arg inf
Ui

Rp,i(Ui | Y ) . (28)

As a result, the cost function J̃(δ, X̂) is given by

J̃(δ, X̂) = max
i∈{0,...,s}


∫
Y

δi(Y )R∗p,i(Y )fi(Y ) dY∫
Y

δi(Y )fi(Y ) dY

 . (29)
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In the following theorem, we provide closed-form expressions for
X̂i(Y ). Specifically, the structure of the optimal state estimator that
minimizes the cost function defined in (13) is provided in Theorem 3.
To formalize the results, define Sl as the set of subnetworks that Xl
belongs to, i.e.,

Sl , {k : l ∈ Ak} , for l ∈ {1, . . .m} . (30)

Theorem 3. Denote the optimal estimate of Xl in subnetwork
Ak, k ∈ Sl by X̂k

l . Under model hj , for j ∈ {0, . . . , s}, the
optimal state estimates for the state parameter Xl in subnetworks
Sl, for l ∈ {1, . . .m}, satisfy

∀k ∈ Sl : X̂k
l (1 + |Sl|) = Ej [Xl |Y k] +

∑
r∈Sl

X̂r
l . (31)

This theorem indicates that the local estimates of Xl by the subnet-
work that share it can be found by solving an |Sl|-dimensional linear
system with the |Sl| equalities specified by (31). These local esti-
mates collectively minimize the cost function defined in (13). Using
the optimal estimators designed in Theorem 2, the corresponding
optimal detection rules are designed by solving (25).

Theorem 4 (Detection and Isolation). The optimal decision rule is
δi∗(Y ) = 1, where i∗ , argmini∈{0,...,s}Bi . B0 is defined as

B0 , `0f0(Y )(R∗p,0(Y )− u) + `s+1

s∑
i=1

εi
1− ε0

fi(Y ) , (32)

and {Bi : i ∈ {1, . . . , s}} are defined as

Bi , `ifi(Y )(R∗p,i(Y )− u)

+ `s+1

s∑
j=1,
j 6=i

εj
1− ε0

fj(Y ) + `s+2f0(Y ) , (33)

and the non-negative constants {`i : i ∈ {0, . . . , s + 2}} are the
Lagrangian multipliers selected such that

∑s+2
i=0 `i = 1 , and the

constraints in the following convex optimization problem (which is
equivalent to the problem in (25)) are satisfied.

P̃(α, β) =



minδ u

s.t.
∫
Y

δi(Y )fi(Y )(R∗p,i(Y )− u)dY ≤ 0

s∑
j=1

s∑
i=0
i 6=j

εj
1−ε0

∫
Y

δi(Y )fj(Y ) dY ≤ β

s∑
i=1

∫
Y

δi(Y )f0(Y ) dY ≤ α

.

(34)

5. CASE STUDY

We evaluate the estimation quality obtained by the design of
the state estimators and decision rules established in Section 4 on
the network model in Fig. 1. We assume that the states Xi, for
i ∈ {1, . . . , 7} are independently and identically distributed (i.i.d)
with pdf Unif[0, 2], and the noise component in all measurements is
i.i.d with pdf N (0, 0.1). Of all the possible measurements available
in a subnetwork, we assume that the subnetwork can choose a subset
of them such that it is observable. In subnetworkA1, we assume that
the measurements Y 1 = [Y1, Y2, Y3, Y4, Y5] are related to the states
X1 = [X1, X2, X3, X4] as

Y 1 =H1X1 +N1 , (35)

where

H1 =


1 0 1 0
1 1 0 0
0 1 1 1
0 0 1 0
1 0 0 0

 .

Similarly, in subnetwork A2, the measurements
Y 2 = [Y8, Y9, Y10, Y11, Y12] are related to the states
X2 = [X4, X5, X6, X7] according to

Y 2 =H2X2 +N2 , (36)

where

H2 =


1 1 1 0
0 0 1 1
0 1 0 1
0 1 0 0
0 0 0 1

 .

We assume that the network model can be altered by two mutually
exclusive events:

1. Malfunction in the node with measurement Y1, with proba-
bility ε1 = 0.3, such that when malfunctioning, Y1 is only
noise, and

2. Malfunction in the node with measurement Y10, with proba-
bility ε2 = 0.2, such that when malfunctioning, Y10 is only
noise.

We denote the ratio ofP(α, β) and the average estimation cost under
no uncertainty by q and evaluate it for different values of α and β.

0.4 0.5 0.6 0.7 0.8
1.1

1.2

1.3

1.4

1.5

1.6

 = 0.2, distributed

 = 0.25, distributed

 = 0.2, localized

 = 0.25, localized

Fig. 2. q versus β for different α

Figure 2 shows the characterization of the cost P(α, β) normalized
by the estimation cost when there is no model uncertainty and its
comparison with the case when the state estimates of shared states
are calculated independently by the subnetworks locally. As the con-
straints on α and β are relaxed, the estimation cost decreases mono-
tonically. Also, the distributed estimation strategy outperforms the
localized estimation strategy.

6. CONCLUSION

In this paper, we have considered the problem of distributed state
estimation in an interconnected network where we face uncertainty
in the network model. The uncertainty in the true model is formu-
lated as the possibility of the true model deviating from the nominal
model to a set of alternative models with prior probabilities. Under
this setting, we have formulated the distributed state estimation prob-
lem jointly with the design for detection rules for isolating the true
model. We have shown that the detection and estimation routines are
intertwined and have provided the design for optimal estimators and
detection rules. We have also evaluated the theory developed in a
case study and observed that the estimation strategy proposed in this
paper performs better than the estimation strategy based where the
shared states are estimated independently by the subnetworks.
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