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ABSTRACT

Future generations of mobile communication networks are
envisioned to utilize dense deployments of heterogeneous cell
types to fulfill increasing performance requirements. An ef-
ficient and optimized utilization of the network resources, in-
cluding user allocation management and load balancing be-
tween cells, is crucial for such networks to maintain high
throughput and to handle increasing interferences. Due to
the combinatorial nature of user allocation, load balancing is
a mixed-integer linear problem that does not scale well will
the number of users and cells. Heuristic methods to solve
similar problems in this context are available, but they typi-
cally require extensive coordination between network entities
while achieving highly suboptimal performance. We propose
a machine learning based approach that achieves close to op-
timal performance while requiring very limited local interac-
tion and computational effort during operation.

Index Terms— mobile communications, heterogeneous
networks, load balancing, network optimization, support vec-
tor machines

1. INTRODUCTION

For the upcoming fifth generation of mobile communication
networks (5G), multiple technologies are subject of current
research. With the use of state-of-the-art modulation and
coding schemes, the throughput of a conventional networks
is being pushed to its theoretical limit. To satisfy increasing
performance requirements, the network needs to utilize addi-
tional resources, which can be of various types [1, 2, 3, 4].
Research in millimeter-wave communications focuses on
utilizing additional frequency bands in the wireless spec-
trum, while Massive-MIMO employs large antenna arrays to
achieve a spatially orthogonalized transmission and reception
of signals. Supplementing these developments in the wireless
network architecture is the dense deployment of heteroge-
neous networks, or in short ”HetNets” [5, 6].
The concept of HetNets has already matured with the current
fourth generation of mobile communication networks, but
will only reach truly widespread and massive deployment
in upcoming generations [7]. Macro cells (MC) with large
coverage areas are assisted in serving user demands by mul-
tiple small cells (SC), which have lower transmit power and

therefore lower coverage areas. These small cells form an
additional tier in the network, which has shown to be very
suitable for assisting the service of multi-user hotspots. A key
challenge however is to analyze and balance the load experi-
enced by both tiers, the macro- and the small cells, such that
the overloading of single cells and underutilization of others
is prevented [8, 9, 10]. Established approaches to balance
the cell load by optimizing user allocation typically require
solving optimization problems that rely on global knowledge
of the statuses of multiple entities in the network [11, 12].
Decentralized schemes have been proposed that implicitly
achieve load balancing by artificially expanding the coverage
areas of the (typically underutilized) small cells in a process
referred to as ”cell range expansion”. Decentralized methods
for cell range expansion have been developed [13, 14], and
proven to show good performance. Close to optimal per-
formance however can only be achieved by maintaining and
updating tables of system parameters according to changes in
the network. This process requires continuous adaptation and
information exchange between cells, which has been identi-
fied as potential bottlenecks [15, 16].
We introduce an approach to solve the load balancing prob-
lem optimally based on Mixed-Integer Linear Programming
(MILP). Because this problem is combinatorial in nature it
does not scale well for high numbers of users and cells. Also,
the problem needs to be solved jointly for, and using infor-
mation from, all entities in the network. Because of these
impracticalities we will use the MILP-based problem formu-
lation only as a performance benchmark and for providing
training data to our machine learning based method. This
decentralized method provides resource allocation by utiliz-
ing multi-class support vector machines that traditionally are
used for classification problems. Each user is allocated based
on information available directly from only those neighboring
cells that are potential allocation candidates. We define, with-
out loss of generality, the ”primary”, ”secondary” and ”ter-
tiary” allocation candidates under consideration as those cells
that provide, in decreasing order of magnitude, the strongest
signal to the user. The information provided by the cells to
support the balancing procedure includes their type (macro-
or small cell), an estimation of the current data demand from
users in their coverage area, and information about the chan-
nel conditions of the users. These attributes are then used
in a scheme that relies on support vector machines (SVM) to
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”classify” each user as belonging to any of the three candidate
cells. As training data for the SVM, we use the results from
the optimization problem of minimizing the maximum load
over the entire network. Once the SVM is trained however,
the obtained learning system can be used in a decentralized
way. Subsequent optimization is only necessary when the
cell topology significantly changes, for example if cells are
being shut off entirely. Preventing extensive optimization
and continuous information exchange is the key benefit of
the proposed method compared to established approaches,
i.e. [13, 8, 12]. As an additional requirement compared to
said methods, our approach requires data for training the sup-
port vector machines, but historic data is generally available
and the costly MILP-based network optimization to obtain
training labels can be carried out during the design phase.
The application of statistical learning methods in optimizing
wireless communications networks is only being considered
recently [17], and to the best of our knowledge, methods sim-
ilar to the proposed one have not been previously introduced.
The remainder of the paper is organized as follows: In Sec. 2,
we provide a system model for the wireless communication
network, followed by a discussion of the proposed scheme in
Sec. 3. Simulation results and a comparison of the proposed
method with the conventional approach, as well as the opti-
mal solution, are given in Sec. 4, and a summary of the work
is provided in Sec. 5.
Notation: Throughout the paper, we will use normal letters
for scalars, bold lowercase letters for column vectors and
bold uppercase letters for matrices. We further indicate with
|| · || the euclidean norm of a vector, and with ·T the vector
transpose.

2. SYSTEM MODEL

Let us consider a wireless communication network with k
cells for k = 1, . . . ,K. We define a cell as the coverage area
of one base station antenna, which has the transmit power pk.
It is further assumed that the network contains M demand
points (DP), indicated by m = 1, . . . ,M . The parameter Dm

of each DP may represent the demand of single users, or ag-
gregated data demand of hotspots where all user nodes are in
close proximity, and that therefore can be assumed to have
similar channel conditions. The attenuation factor between
the antenna of cell k and DP m is the product of path loss and
antenna gain attenuation factors, and will in the following be
denoted as gkm. The Signal-to-Interference-plus-Noise ratio
(SINR) of cell k serving user m can be computed as

γkm =
pkgkm∑K

j=1,j 6=k pjgjm + σ2
(1)

where σ2 represents power of additive white Gaussian noise.
We denote W as the total available system bandwidth and
as ηBW

km the bandwidth efficiency of the communication
link between cell k and DP m. To satisfy the demand
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Fig. 1. network scenario and allocation example

of DP m, cell k needs to use the fraction Φ(k,m) =
Dm/

(
ηBW
km W log2(1 + γkm)

)
of its resources [18, 19]. We

define the matrix A ∈ {0, 1}K×M with its elements Akm set
as Akm = 1 if DP m is allocated to cell k, and Akm = 0
otherwise. Therefore the total ratio of its resources cell k is
utilizing to satisfy the data demand of allocated users can be
computed as

ρk(A) =

M∑
m=1

Akm
Dm

ηBW
km W log2(1 + γkm)

. (2)

For feasible network scenarios, where no cell is overloaded,
it holds that 0 ≤ ρk ≤ 1 ∀k. The maximum load level of any
cell in the network is maxk ρk.
For each DP m, we consider three neighboring cells as can-
didates for the allocation, which is illustrated in Fig. 1. The
primary, secondary and tertiary allocation candidates of DP
m are, in descending order of magnitude, those cells which
can provide the first-, second-, and third-highest signal power
pkgkm at the DP’s location. Their indices are listed in the
vectors κP,κS,κT ∈ {0, 1}M×1, respectively, with their
respective elements determined as

κPm = arg min
k

pkgkm, (3)

κSm = arg min
k\{κP

m}
pkgkm, (4)

κTm = arg min
k\{κP

m,κ
S
m}
pkgkm. (5)

In the case that we set Akm = 1 for k = κPm for all DPs m,
each DP is allocated according to the cell providing the con-
nection with the highest SINR. In this way the additional load
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caused by each individual connection is minimized. We will
employ this common allocation scheme as a heuristic baseline
approach, in the following denoted as ”max. SINR”.

3. LOAD BALANCING

The load balancing problem in a wireless communication net-
work can be solved optimally for the full network, by choos-
ing the allocation of DPs to cells such that the maximum load
level α among all cells in the network is minimized. The cor-
responding mixed-integer linear optimization problem is the
following:

minimize
α,A∗

α (6a)

subject to α ≥
M∑
m=1

A∗kmΦ(k,m) ∀k (6b)

K∑
k=1

A∗km = 1 ∀m (6c)

α ∈ R0+ (6d)
A∗km ∈ {0, 1} ∀k,m (6e)

In problem (6), Eq. (6c) constrains each DP to be allocated
to exactly one cell. As discussed in Sec.1, we intend to use
this approach as a benchmark and to provide training data
to the machine learning based scheme as introduced in the
following.
Let us define the label vector y ∈ NM×1 which has elements
ym determined as follows:

ym =


2 if A∗κS

mm
= 1

3 if A∗κT
mm

= 1

1 otherwise

(7)

To obtain training datasets of sufficient size, we use the labels
of all DPs from N tests for a total of T = MN labels, in-
dicated by t = 1, . . . , T . We will therefore refer to the t-th
label as yt.
For the training of the proposed statistical learning approach
for user allocation, attributes need to be extracted for the three
candidate allocation cells of each userm. These attributes are
designed to reflect our specific knowledge of the network and
the parameters we find significant for the allocation problem.
We extract three attributes for each cell. The first attribute is
an indicator of cell type defined as

Λ(k) =

{
1 if cell k is a small cell,
0 otherwise.

(8)

The second attribute describes the additional load that user m
would cause to cell k if it was allocated to it. This corresponds
exactly to the parameter Φ(k,m) introduced in Sec.2.

The third attribute is the ”would-be” load of cell k, if the
max. SINR scheme was being used. This attribute serves as a
measure of load caused by DPs in each cell’s coverage area.
The third attribute is determined as follows:

Ψ(k) =
∑

m|κP
m=k

Φ(k,m). (9)

Using all three of the aforementioned attributes for each of
the three candidate cells for allocation, we can determine the
attribute vector of DP m as

xm =
[
Λ(κPm),Λ(κSm),Λ(κTm),Φ(κPm,m),Φ(κSm,m), . . .

Φ(κTm,m),Ψ(κPm),Ψ(κSm),Ψ(κTm)
]T
. (10)

Similar to the label vector, we aggregate attribute vectors from
N tests for a total of T = NM attribute vectors, and we will
therefore refer to the t-th attribute vector sample as xt.
This results in a training problem of a multi-class classifier
which we solve by training two SVM, with the first being
used to identify DPs that are allocated to their secondary cell,
and the second SVM identifying those that are allocated to
their tertiary cell, characterized by the normal vectors to their
separating hyperplanes w21 and w31 respectively. The opti-
mization problem to be solved for training an SVM that clas-
sifies between classes i and j is the following [20]:

minimize
wij ,bij ,ξij

1

2
(wij)Twij + C

∑
t

ξijt (11a)

subject to (wij)Tφ(xt) + bij ≥ 1− ξijt if yt = i (11b)

(wij)Tφ(xt) + bij ≤ ξijt − 1 if yt = j (11c)

ξijt ≥ 0 (11d)

wij ∈ RL×1, bij ∈ R, ξij ∈ RL×1 (11e)

In problem (11), the function φ(xt) maps the 9-dimensional
attribute vector xt onto the L-dimensional feature space,
where for example polynomial combinations of the attributes
are also being considered. SVM training problems such as
(11) can be solved efficiently in their dual formulation using
kernel functions [21], a functionality which is included in
common machine learning software tools [22, 23].
We train two SVMs to obtain w21 and w31. We define ŷm as
the cell type that is classified by the SVMs according to the
two decision functions, which is computed as:

ŷt =



2 if (w21)Tφ(xm) + b21 ≥ 0 and
(w21)Tφ(xm) + b21 ≥ (w31)Tφ(xm) + b31

3 if (w31)Tφ(xm) + b31 ≥ 0 and
(w31)Tφ(xm) + b31 ≥ (w21)Tφ(xm) + b21

1 otherwise
(12)

Using Eq. (12), we obtain the allocation decisions for all DPs
m in a given network scenario, which lead to a load-balanced
allocation solution for the full network.
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4. SIMULATION RESULTS

Simulations of a wireless communication network with three
macro- and six small cells in fixed positions on a 1000 ×
1000m area as illustrated in Fig. 1 are carried out. The macro
cells have a transmit power of 46 dBm and 10 dB antenna
gain, totaling an equivalent effective isotropic radiated power
(EIRP) of 56 dBm. All small cells are simulated with 36 dBm
transmit power and 5 dB antenna gain, and therefore exhibit
an EIRP of 41 dBm. Path loss is simulated according to the
specifications in 3GPP TS 36.814 [24]. The bandwidth effi-
ciency is set to ηkm = 0.8 and the total system bandwidth is
W = 20MHz.
Problem (6) is solved using the CVX toolbox for MATLAB
[25] with the Gurobi solver [26], and the SVM training prob-
lem (11) is solved using the Machine Learning Toolbox for
Matlab [23]. For the training of the SVMs, we use T =
10000 DP attribute vectors from N = 100 simulations of
network scenarios with M = 100 DPs each. The soft thresh-
old weighting parameter C in problem (11) is determined by
searching on a grid the value that provides the highest classi-
fication accuracy on the training set. For the function φ(·) in
problem (11) consider both, the linear mapping of attributes
to features, and the mapping to quadratic features. In the fol-
lowing we refer to these two methods ”lin. SVM” and ”quad.
SVM”, respectively. To evaluate the performance of the al-
gorithms with a testing set, we generate N = 100 instances
of network scenarios with M = 100 DPs each and average
the resulting load levels of each cell over all scenarios. Ac-
cordingly, SVM classification on the testing set is performed
using the coefficients obtained from the training set.
As observable in Fig. 2, the maximum cell load increases with
the demand, here simulated in the range of 0-1 MBit/s per
DP. For the given network configuration, there are differences
in the sizes of coverage areas that result in unbalanced load
levels across the cells. The max. SINR approach is not de-
signed to mitigate this imbalance, and therefore exhibits the
worst performance. Both SVM-based methods however per-
form better than the max. SINR approach, with the quadratic
SVM being very close to the optimal solution. This demon-
strates that using the learning-based approach discussed in the
paper, we can obtain a decentralized load balancing scheme
that is close to the globally optimal solution of a computa-
tionally extensive, joint optimization of all allocations in the
network.
The average load level of individual cells for all methods and
a fixed DP demand of 1 MBit/s is shown in Fig. 3. It shows
that the cell ”MC1”, which corresponds to the macro cell
in the lower center area of Fig. 1, is close to being over-
loaded. Both the SVM-based methods and the optimal so-
lution achieve this through offloading to small cell. It is ob-
servable that the small gap to the optimal solution probably
originated from small cell ”SC2” being underutilized in the
SVM-based methods compared to the optimal solution.
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5. CONCLUSION

We introduced a method for decentralized load balancing in
mobile communication networks that relies on using a support
vector machines based classification procedure for resource
allocation. Compared to many established approaches, this
method does not require joint optimization of multiple net-
work entities, nor does it create high communication over-
head, and during operation it only requires limited local in-
teraction. Simulation results reveal that the proposed method
provides performance that is very close to the optimum. Fur-
ther research can be dedicated towards a method that addi-
tionally adapts to significant changes in the network topol-
ogy. The SVM coefficients could be automatically updated,
for example if cells deactivate for power saving.
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