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ABSTRACT

This paper considers the resource allocation problem in wireless sys-
tems over an unknown time-varying non-stationary channel. The goal
is to maximize a utility function, such as a capacity function, over a set
of wireless nodes while satisfying a set of resource constraints. To by-
pass the need for a model for channel distribution as it varies over time,
samples of the channel are taken at every time epoch to estimate the
channel. The resulting stochastic optimization problem is converted in
its Lagrange dual problem, where the resulting stochastic optimization
problem can viewed equivalently as minimizing a certain empirical risk
measure, a well-studied problem in machine learning. The second or-
der Newton’s method is used to quickly learn statistically approximated
optimal resource allocation policies over the sampled dual function as
the channel evolves over time epochs. The quadratic convergence rate
of Newton is used to establish, under certain conditions on the sampling
size and rate of channel variation, an instantaneous learning and tracking
of these policies. Numerical simulations demonstrate the effectiveness
of the learning algorithm on a low-dimensional wireless capacity maxi-
mization problem.

Index Terms— wireless communications, resource allocation, sec-
ond order method, non-stationary channel

1. INTRODUCTION

Wireless machine-to-machine communication is increasingly used in
cyber-physical applications to connect sensing devices for system mon-
itoring, teams of robotic vehicles, and the Internet-of-Things. Tradition-
ally models of wireless channel conditions and their distributions [1, Ch.
2-3] are required in order to operate these systems reliably and with op-
timal performance. For example, channel models facilitate to optimize
the capacity of the wireless channel [1, Ch. 4] and allocate commu-
nication resources for wireless networks [2]. Apart from the common
i.i.d. channel model (block fading), time-correlated models such as
Markov models are frequently assumed [3–5]. Models also facilitate
the allocation of communication resources to optimize closed loop con-
trol performance for sensor-actuator systems, e.g., [6–9], and wireless
resource allocation problems [10–12].

Real world wireless systems operate under unpredictable channel
conditions that may vary over time. Both a reliable model for the model
and how it varies over time are often not known in practice, but can be
observed via collected channel quality samples. Sampling can be used
to learn a channel model directly through samples to employ a model-
based approach. To bypass the need for modeling altogether, we may
directly optimize system performance in a non-stationary environment
through sampling [13, 14]. To achieve this we make a connection be-
tween the model-based design approach and an empirical risk minimiza-
tion (ERM) problem, typical in machine learning. Furthermore, we em-
ploy a fast second order method to quickly adapt to time-varying channel
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models. This is motivated by the use of Newton’s method to solve large
scale ERM problems through adaptive sampling in [15,16]. The authors
previously applied a similar Newton-based learning approach to control
systems [17].

In this paper the goal is to design resource allocation policies of
a wireless communications system to maximize some utility function
subject the constraints of the system, such as total resource availabil-
ity. The wireless channel is modeled as a fading channel with a time-
varying and unknown distribution, and only available through samples
taken over time. We demonstrate in Section 2 that the resource alloca-
tion problem can be converted in the Lagrangian dual problem, which is
itself a stochastic program. By taking samples of the unknown distribu-
tion, the problem is equivalent to a empirical risk minimization problem
(ERM). Because the optimal resource allocations change as the distribu-
tion changes, we present a second order learning method that can learn
statistically accurate policies with a single iteration (Section 3). This
convergence properties are analyzed formally in Section 4 and given an
empirical demonstration in Section 5.

2. RESOURCE ALLOCATION AS EMPIRICAL RISK
MINIMIZATION

We consider a generic setting in which we have a wireless network
of m nodes indexed by i = 1, . . . ,m. Given channel states h :=
[h1, . . . , hm] ∈ H, instantaneous transmission powers p(h) :=
[p1(h1), . . . , pm(hm)] are selected for each node with which it will
attempt to transmit a message. Further, we track the ergodic averages
over time with variables y = [y1, . . . , ym], which are limited by the
expectation of a vector function F(h,p(h)) of the channel states and
instantaneous transmission powers. This function may represent, for
example, the probability of successful transmission. The goal is to
maximize a concave utility, or capacity, function C(y) over the system,
subject to the limit on ergodic averages and a second function concave
G(y) that captures total resource usage—see, e.g. [2] for details on this
generic model. This can be formulated with the following stochastic
optimization problem

[p∗(h),y∗] := argmax
p,y∈Rm

C(y) (1)

s. t. y ≤ Eh {F(h,p(h))} , 0 ≤ G(y).

Note that while C(y) and G(y) are concave, F(h,p(h) is not nec-
essarily so. The problem in (1) is a constrained optimization problem
over an infinite dimensional variable p(h) but can converted into the
Lagrangian dual problem using a well-known construction. For nota-
tional convenience, define the augmented variables F̃(h,p(h),y) :=
[F(h,p(h));G(y)] and ỹ := [y; 0]. We form the Lagrangian as
L(p(h),y,µ) := C(y) + µT [EhF̃(h,p(h),y) − ỹ] using a dual
variable µ ∈ Rm+1. Define p(h,µ) := argmaxp L(p(h),y,µ) and
y(µ) := argmaxy L(p(h),y,µ) to be the optimal power allocations
and ergodic averages for a given dual variable µ1. The dual function

1Note than solving for p(h,µ) doesn’t require y and visa versa.
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L(µ) can then be written as

µ∗ := argmin
µ≥0

L(µ) := argmin
µ≥0

Ehf(µ,h), (2)

where f(µ,h) := C(y(µ)) + µT
[
F̃(h,p(h,µ),y(µ))− ỹ(µ)

]
.

It can be shown that the problem in (1), while not strongly convex,
nonetheless exhibits zero duality gap [2], thus implying that the op-
timal solution to (1) can be recovered exactly from (2) as p∗(h) =
argmaxL(p(h),µ∗). We stress that p∗(h) is the optimal power al-
location policy for a fixed channel distribution H, meaning the problem
in (2) must be continuously solved as the channel varies over time. This
fact necessitates the need for fast solution methods to solve (2), which
we describe in the following section.

Observe that the dual function L(µ) is a statistical loss function,
specifically the expectation of a function f(µ,h) over random variable
h. Problems of the form are common in machine learning, where a chal-
lenge exists in solving L(µ) when the distributionH is not known. This
is indeed the case in most wireless resource allocation problems, where
H represents the channel distribution. Rather than assume a specific
model for H, we may instead replace the statistical loss L(µ) with an
empirical loss L̂(µ). In empirical risk minimization (ERM) problems,
the expectation over an unknown distribution is bypassed by taking an
empirical average over a set of N samples. If we have N channel sam-
ples labelled h1,h2, . . .hN , the empirical loss function is defined as

L̂(µ) :=
1

N

N∑
l=1

f(µ,hl). (3)

The goal of learning in the setting of wireless communication then
becomes to solve, with some approximation, resource allocation prob-
lems through the sampling of an unknown channel to solve the statistical
loss function derived from Lagrangian duality. The difference between
the empirical loss L̂(µ) and the dual loss L(µ) is well-studied in ma-
chine learning literature [18] and is captured in a term V , known as the
statistical accuracy. The constant VN is, in particular, a bound on the
point-wise difference between the N -samples empirical and statistical
loss with high probability, i.e. supµ ‖L̂(µ) − L(µ)‖ ≤ VN . Com-
mon bounds for the statistical accuracy VN can be obtained in the or-
der of O(1/

√
N) or, in some stronger cases, O(1/N) [18, 19]. In this

work, we assume this constant is given or can be estimated easily. To
employ a fast converging second order method that can be used in non-
stationary settings, there are two issues inherent in the Lagrangian dual
model to be corrected. The first is that the dual function L(µ)—and
L̂(µ)—is not strongly convex. The second is that the problem in (2)
includes a non-negativity constraint µ ≥ 0 due to the inequality con-
straints. We solve both of these problems through the use of regulariz-
ers. More specifically, we add the regularization term αVN/2‖µ‖2 to
the empirical risk in (3) to make the problem strongly convex. We also
remove the non-negativity constraint by adding a logarithmic barrier reg-
ularizer. To preserve smoothness for small µ, however, we specifically
use an ε-thresholded log function, defined as

logε(µ) :=

{
log(µ) µ ≥ ε
`2,ε(µ− ε) µ < ε,

(4)

where `2,ε(µ) is a second order Taylor series expansion of log(µ)
centered at ε for some small 0 < ε < 1. The second regularizer
−βVN1T logε µ is then added to obtain a regularized empirical risk
function

R̂(µ) :=
1

N

N∑
l=1

f(µ,hl) +
αVN

2
‖µ‖2 − βVN1T logε µ. (5)

The regularized function in (5) includes two additional terms com-
pared to (3), each scaled by the statistical accuracy VN and constants
α and β. While the presence of such terms will modify the solution
R̂∗ := minµ R̂(µ) as compared to L̂∗ = minµ≥0 L̂(µ), we stress
here that the value of interest is the original loss function minimizer
L∗ = minµ≥0 L(µ). From the definition of statistical accuracy we
have that |L∗ − L̂∗| ≤ VN , so any additional bias of order O(VN )
provides a negligible additional error. Both the quadratic and log-barrier
regularizers, when scaled by VN , are known to introduce biases of this
order—see, e.g., [18,20] for details. Indeed, regularizers of this form are
common in statistical learning problems of this form for this reason [18].
It then suffices to find a minimizer for R̂(µ) rather than L̂(µ), as the
former is both strongly convex and can be minimizes with imposing the
non-negativity constraint on µ.

Recall that the regularized empirical loss R̂(µ) is derived from sam-
ples from a single channel distribution H, and thus its minimizer will
only recover an (approximately) optimal power allocation pi(h) for this
particular channel. In a non-stationary setting, we may instead consider
that the distribution is indexed by a time epoch k (where we assume a
time epoch is small enough where the channel Hk is fixed over that pe-
riod). Then, at each k we can draw N samples h1

k, . . . ,h
N
k from Hk

and construct a corresponding regularized empirical loss R̂k(µ). We are
interested in recovering the optimal dual parameter µ∗k as

µ∗k := argmin
µ

R̂k(µ). (6)

Observe that (6) would need to be solved at each time k, which
is not necessarily feasible if the channel distribution is changing faster
than the time it takes to find µ∗k. In the following section, we develop a
learning method that uses second order information to find approximate
solutions to µ∗k with a single iteration, thus making problems of this
form practical. We conclude with a brief remark regarding the sampling
on a non-stationary channel.

Remark 1 Observe that forming R̂k requires drawing N new samples
at each time epoch to achieve accuracy VN . Reaching the desired ac-
curacy may be hindered by the ability to draw many samples quickly or
easily. One may consider, if the consecutive distributions are close, to
alternatively keep (M − 1)N/M samples previously drawn the window
Hk−M+1, . . . ,Hk−1 and draw only N/M new samples from Hk. The
exact bounds on the statistical accuracy achieved by L̂k in this non-i.i.d.
case are not well studied, so are no considered in this work, although
this sampling approach can be used in practice to reduce the sampling
burden at each time epoch.

3. SECOND ORDER LEARNING METHOD

We propose the use of second order information through Newton’s
method to find an approximate solution to (6) at each time epoch k
with a single iteration. Recall that the exact solution µ∗k only solves
the original problem of interest up to within the statistical accuracy VN .
As a consequence, there is no need to solve for µ∗k exactly as long as a
solution µk can be found that is also VN . Consider updating µk over
each epoch k = 0, 1, . . . using the Newton update on the (6) as follows.
First define the gradient∇R̂k(µ) and Hessian∇2R̂k+1(µ) as

∇R̂k(µ) =
1

N

N∑
l=1

(
F̃(hk,p(hk,µ),y(µ))− ỹ(µ)

)
+ αVNµ− βVNµ−1.

(7)

∇2R̂k(µ) =
1

N

N∑
l=1

∇µ

(
F̃(hk,p(hk,µ),y(µ))− ỹ(µ)

)
(8)

+ αVNI + βVNdiag{µ−2}.
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Algorithm 1 Learning via Newton’s Method
1: Parameters: Sample size increase constants N0 ≥ 1 backtracking

params 0 < δ < 1, α, β.

2: Input: Initial sample size N = N0 and argument µ0

‖∇R̂0(µ0)‖ < (
√

2α)VN

3: for k = 0, 1, 2, . . . do {main loop}
4: Reset factor N = N0 .

5: repeat {sample size backtracking loop}
6: Draw N samples fromHk+1.

7: Gradient∇R̂k+1(µk), Hessian∇2R̂k+1(µk) [cf. (7), (8)]:

8: Update [cf. (9)]: µk+1 = µk −∇2R̂−1
k+1(µk)∇R̂k+1(µk)

9: Determine power allocation, ergodic averages:

p(hk+1,µk+1) = argmax
p

{
µTk+1[

1

N

∑
l

F̃(hlk+1,p(hl),y)]

}
.

y(µk+1) = argmax
y

m∑
i=1

µik+1y
i + µm+1

k+1 G(y)

10: Backtrack sample draw N = δN .

11: until ‖∇R̂k+1(µk+1)‖ < (
√

2α)VN

12: end for

Each dual parameter µk+1 is then updated from the previous parameter
µk using the Newton update as

µk+1 = µk −∇
2R̂k+1(µk)−1∇R̂k+1(µk). (9)

Observe in the update in (9) that the gradients and Hessian are com-
puted at the sampled loss function at time k + 1, built from samples
from the current distributionHk+1. It therefore requires the sampling of
N samples from each distribution at each time epoch before performing
the update (or using other sampling schemes, as discussed in Remark
1). The key observation in this update is that, if successive channel dis-
tributions Hk and Hk+1 are sufficiently similar, i.e. the channel varies
slowly, then the optimal solutions µ∗k and µ∗k+1 will also be close to-
gether. Therefore, a VN -approximate solution µk to the loss function
R̂k(µ) will be close to a VN -approximate solution to R̂k+1(µ). We can
consider the current iterate µk as a “soft” start to finding a point µk+1

that approximately minimizes R̂k+1(µ), from which we find the a point
that approximately minimizers R̂k+1(µ), and so forth. Assuming we
start from a VN -optimal point, at each subsequent iteration k we learn
a near-optimal power allocation of the wireless channel for the current
channel distribution.

The complete second order learning algorithm is presented in Algo-
rithm 1. After preliminaries and initializations in Steps 1-4, the back-
tracking loop starts in Step 5. Each iteration begins in Step 6 with the
the drawing of N samples from the new channel distribution Hk+1 to
form R̂k+1. The gradient∇R̂k+1 and Hessian Hk+1 of the regularized
dual loss function are computed in Step 7, after which the Newton step
is taken to update µk+1 in Step 8. In Step 9, the optimal resource alloca-
tion variables p(h,µk+1) and y(µk+1) are computed using the updated
dual variable. Because the function and channel system parameters that
are not known in practice, we include a backtracking step for the sample
drawN in Step 10 to ensure the new iterate µk+1 is within the statistical
accuracy VN of R̂k+1.

4. CONVERGENCE ANALYSIS

We develop in this section an analysis of the second order learning
method for the ERM problem in (6). Our primary result gives estab-
lishes conditions on the functions and channel distributions that allow
for statistically accurate solutions to (6) for each time k using a single
iteration of Newton’s method. We first state two assumptions on the
dual loss functions f .

Assumption 1 The statistical loss function gradients∇f(µ, z) are Lip-
schitz continuous with constant ∆.

Assumption 2 The loss functions f(µ,h) are self-concordant with re-
spect to µ for all h.

Assumption 1 provides a smoothness condition for the dual func-
tions, which can also be obtained by assuming strong concavity of the
primal objective function C(y). Because the dual function is always
convex [20], it follows then that the regularized empirical loss gradi-
ents ∇R̂k are Lipschitz continuous with constant ∆ + cVN where c :=

α + β/ε2 and the function R̂k is strongly convex with constant αVN .
Assumption 2 establishes self concordance of the loss functions, which
is a customary assumption in the analysis of second-order methods. This
implies self concordance of R̂k+1 because both the quadratic and thresh-
olded log regularizers are self-concordant. We include two additional
assumptions.

Assumption 3 The difference between the gradients of the empirical
loss L̂k and the statistical average loss Lk is bounded by V 1/2

N for all µ
and k with high probability,

sup
µ
‖∇Lk(µ)−∇L̂k(µ)‖ ≤ V 1/2

N , w.h.p. (10)

Assumption 4 The difference between two successive expected loss
Lk(µ) = Ehkf(µ,hk) and Lk+1(µ) = Ehk+1f(µ,hk+1) and the
difference between gradients are bounded respectively by a bounded
sequence of constants {Dk}, {D̄k} ≥ 0 for all µ,

sup
µ
|Lk(µ)− Lk+1(µ)| ≤ Dk, (11)

sup
µ
‖∇Lk(µ)−∇Lk+1(µ)‖ ≤ D̄k. (12)

In Assumption 3, we bound the difference between gradients of the ex-
pected loss and the empirical loss with N samples by V 1/2

N , which can
be derived from the law of large numbers. Assumption 4 bounds the
difference in the expected loss functions and gradients at epochs k and
k + 1 by constants Dk and D̄k. This effectively provides a limit on the
rate at which the channel evolves between epochs, and is necessary to
establish relative closeness of R̂k and R̂k+1.

Our goal is to find conditions on the sampling and the non-
stationarity parameters under which a single step of Newton’s method
generates a statistically accurate minimizer to R̂k+1 when starting
from a statistically accurate minimizer to R̂k. This is done in two
steps. We first derive a condition under which VN -accurate solu-
tion to R̂k, labelled µk, is in the local region of R̂k+1 where con-
vergence is quadratic with Newton’s method. To characterize this
region, we use a quantity called the Newton decrement, defined as
λk+1(µ) := ‖∇2R̂k+1(µ)−1/2∇R̂k+1(µ)‖. We say the dual iterate µ

is in the quadratic convergence region of R̂k+1 when λk+1(µ) < 1/4—
see [20, Chapter 9.6.4] for details. The conditions necessary to for this
to hold are established in the following lemma.
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Fig. 1: Convergence paths of optimal values vs. values generated by the proposed second order learning method for time-varying Hk for dual
parameter in a resource-constrained capacity maximization problem with m = 4 (left) and m = 20 (right) nodes. Newton’s method is able to find an
approximately optimal value for the dual variable at each iteration.

Lemma 1 Define µk as a VN -accurate optimal solution of the loss R̂k,
i.e., R̂k(µk) − R̂k(µ∗k) ≤ VN . If Assumptions 1-4 hold, then New-
ton’s method at point µk is in the quadratic convergence phase for the
objective function R̂k+1, i.e., λk+1(µk) < 1/4, if we have(

2(∆ + cVN )VN
αVN

)1/2

+
2V

1/2
N + D̄k

(αVN )1/2
<

1

4
. w.h.p. (13)

The second step is to establish conditions under which a point in the
quadratic convergence region of R̂k+1 will reach its statistical accuracy
VN with a single Newton step as given in (9). We state this condition in
the proceeding lemma.

Lemma 2 Consider µk to be in the quadratic neighborhood of the loss
R̂k+1, i.e., λk+1(µk) ≤ 1/4. Recall the definition of the variable µk+1

in (9) as the updated variable using Newton’s method. If Assumptions
1-3 hold, then the difference R̂k+1(µk+1)− R̂∗k+1 is upper bounded by

R̂k+1(µk+1)− R̂∗k+1 ≤ 144(5VN + 2Dk)2. (14)

With the previous two Lemmata we establish a conditions for a i.) cur-
rent iterate µkbeing in the quadratic convergence region of subsequent
empirical loss function R̂k+1 and ii.) an upper bound on the suboptimal-
ity of the updated iterate µk+1 from within this quadratic region. From
these two results, the conditions necessary for reaching statistical accu-
racy with single updates follows, as presented in our primary theorem.

Theorem 1 Consider Newton’s method defined in (9). Define VN to be
the statistical accuracy of L̂k after taking N samples. Further consider
the variable µk as a VN -optimal solution of the loss R̂k, and suppose
Assumptions 1-4 hold. If the following conditions(

2(∆ + cVN )VN
αVN

)1/2

+
2V

1/2
N + D̄k

(αVN )1/2
<

1

4
(15)

144(5VN + 2Dk)2 ≤ VN (16)
are satisfied, then the variable µk+1 computed from (9) has the subopti-
mality of VN with high probability, i.e.,

R̂k+1(µk+1)− R̂∗k+1 ≤ VN , w.h.p. (17)

The expressions in (15) and (16) give conditions on the statisti-
cal accuracy VN (controlled by sampling rate N ) and bounds on non-
stationarity Dk and D̄k provide us VN -accurate updates. We conclude
by stressing that this is a theoretical results, and these parameters may
not be known in real applications. In practice, one can use a backtrack-
ing step (as done in Algorithm 1) to control parameters such as N and c
to achieve statistical accuracy.

5. SIMULATION RESULTS

We simulate the performance of our second order learning method on
a simple wireless capacity maximization problem with resource con-
straints. Consider the capacity function for the ith node Ci(pi(h)) =
u log(1 + hpi(h)/v) for some positive constants u, v. The total capac-
ity to be maximized is then written as

C(p(h)) :=

N∑
i=1

u log(1 + hpi(h)/v). (18)

Note that here we forego the ergodic averages for simplicity and seek
to maximize EhC(p(h)) over the instantaneous power allocation vari-
ables. The channel states at epoch k are drawn from an exponential
distribution with mean wk. To model a time-varying channel, we slowly
vary wk for different epochs k. We draw N = 1000 samples at each
epoch and set u = 1 and v = 10. Furthermore, we impose the resource
constraint Eh

∑
i p
i(hi) ≤ pmax for some power budget pmax.

To demonstrate the ability of Newton’s method to instantaneously
learn an approximately optimal power allocation as the channel distribu-
tion varies over time, we perform Algorithm 1 over the ERM problem
in (6) with the defined capacity function C(·), channel distributionsHk,
with previously mentioned resource constraint. In Figure 1 we show the
path of Newton’s method at each epoch k for the dual variable µk for a
small number of nodes m = 4 and large number of nodes m = 20. The
red line of each figure plots the optimal values for the current distribution
parameter uk as it changes with k. The blue line plots the values gener-
ated by the proposed method over epochs. The channel evolves at over
epochs by a fixed rate uk+1 = uk±r for some rate r. Within some small
error, Newton’s method is indeed able to quickly and approximately find
each new solution as the channel varies over time with single iterations
for both the small and larger wireless networks.

6. CONCLUSION

In this paper we develop second order learning method to find statisti-
cally approximated optimal resource allocation policies to use in a non-
stationary wireless network. We apply Lagrangian duality to derive a
parametrized model for such policies that reduces to minimizing a sta-
tistical loss function. Because the channel distribution is unknown and
varies, we collect channel samples to formulate the resource allocation
problem as an empirical risk minimization (ERM) problem. We estab-
lish conditions under which a Newton update can, with a single iteration,
find approximately optimal resource allocations as the channel distribu-
tion changes. This is further exemplified with a numerical simulation.
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