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ABSTRACT

Channel gain cartography relies on sensor measurements to
construct maps providing the attenuation profile between ar-
bitrary transmitter-receiver locations. Existing approaches
capitalize on tomographic models, where shadowing is the
weighted integral of a spatial loss field (SLF) depending on
the propagation environment. Currently, the SLF is learned
via regularization methods tailored to the propagation envi-
ronment. However, the effectiveness of existing approaches
remains unclear especially when the propagation environ-
ment involves heterogeneous characteristics. To cope with
this, the present work considers a piecewise homogeneous
SLF with a hidden Markov random field (MRF) model un-
der the Bayesian framework. Efficient field estimators are
obtained by using samples from Markov chain Monte Carlo
(MCMC). Furthermore, an uncertainty sampling algorithm
is developed to adaptively collect measurements. Real data
tests demonstrate the capabilities of the novel approach.

Index Terms— channel gain cartography, radio tomogra-
phy, Markov chain Monte Carlo, active learning

1. INTRODUCTION

Based on the measurements collected by a network of spa-
tially distributed sensors, channel gain cartography constructs
maps providing channel-state information for links between
locations where no sensors are present [1]. Such maps can
be employed in cognitive radio setups to control the interfer-
ence that the secondary network inflicts to primary users that
do not transmit – setup encountered with television broadcast
systems [2, 3, 4, 5]. The non-collaborative nature of these
primary users precludes any direct form of channel estima-
tion between secondary transmitters and primary receivers.

Existing methods for channel gain cartography build upon
the intuitive principle that spatially close radio links exhibit
similar shadowing [6]. Most of these methods adopt a tomo-
graphic approach [7], where shadowing attenuation is mod-
eled as the weighted integral of an unknown spatial loss field
(SLF) capturing the absorption induced by objects located
in the propagation medium [7, 8, 9, 10, 11]. The weights
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in the integral are determined by a function depending on
the transmitter-receiver locations that is either selected based
on heuristic criteria [7, 12], or blindly learned via the non-
parametric kernel regression method [13]. A channel map
can thus be obtained once the SLF has been estimated.

Conventionally, the SLF is learned via regularized least-
squares (LS) methods tailored to the propagation environ-
ment [11, 12, 14]. However, those approaches are less ef-
fective when the propagation environment exhibits heteroge-
neous characteristics. Different from past works, the present
one leverages the Bayesian framework to learn the piecewise
homogeneous SLF through a hidden Markov random field
(MRF) model [15], which captures spatial correlations of
neighboring regions exhibiting related statistical behavior.
Efficient field estimators will be derived by using Markov
chain Monte Carlo (MCMC) sampling [16], which is a pow-
erful tool for Bayesian inference when the analytical solutions
of the minimum mean-square error (MMSE) or the maximum
a posteriori (MAP) estimators are not available. Furthermore,
an adaptive data acquisition method will be developed, with
the goal of reducing uncertainty of the SLF.

Notation: In is the n × n identity matrix. Superscript >

represents transposition. | · | stands for a cardinality of the set.

2. MODEL AND PROBLEM STATEMENT

Consider a set of sensors deployed over a two-dimensional
geographical area indexed by a set A ⊂ R2. After averaging
out small-scale fading effects, the channel gain measurement
over a link between a transmitter located at x ∈ A and a
receiver located at x′ ∈ A can be represented (in dB) as

g(x,x′) = g0 − γ10 log10 d(x,x′)− s(x,x′) (1)

where g0 is the path gain at unit distance; d(x,x′) := ‖x −
x′‖2 is the distance between the transceivers at x and x′; γ is
the pathloss exponent; and s(x,x′) is the attenuation due to
shadow fading. In CG cartography, a tomographic model for
the shadow fading is adopted [7, 12, 11], namely

s(x,x′) '
Ng∑

i=1

w(x,x′, x̃i)f(x̃i). (2)

where {x̃i}Ng

i=1 is a grid of points overA, f : A → R denotes
the spatial loss field (SLF) capturing the attenuation at each
location, and w(x,x′, x̃) is the weight function modeling the
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influence of the SLF at x̃ to the shadowing experienced by
link x–x′. Examples of the weight function include the nor-
malized ellipse model taking the form [14]

w(x,x′, x̃) :=





1/
√
d(x,x′), if d(x, x̃) + d(x′, x̃)

< d(x,x′) + λ

0, otherwise
(3)

where λ > 0 is a tunable parameter. The value of λ is com-
monly set to half the wavelength to assign non-zero weights
only within the first Fresnel zone. Overall, the model in (2)
shows how the nature and spatial distribution of obstructions
in the propagation medium influence the attenuation between
a pair of locations.

To estimate the channel gain map, N sensors located at
{x1, . . . ,xN} ∈ A collaboratively obtain channel gain mea-
surements. At time slot t, the radios indexed by n(t) and n′(t)
measure the channel gain gt := g(xn(t),xn′(t)) by exchang-
ing pilot sequences, where n(t), n′(t) ∈ {1, . . . , N}. It is
supposed that g0 and γ have been estimated during a calibra-
tion phase. After subtracting these from gt, the shadowing
estimate št := š(xn(t),xn′(t)) := s(xn(t),xn′(t)) + νt is
obtained, where νt denotes measurement noise. Given those
measurement št := [š1, . . . , št]

> ∈ Rt along with the known
set of links {(xn(τ),xn′(τ))}tτ=1 and the weight function w,
the problem is to estimate g(x,x′) between any pair of lo-
cations (x,x′) ∈ A. To this end, it suffices to estimate f ,
or equivalently f := [f(x̃1), . . . , f(x̃Ng

)]> ∈ RNg . After-
wards, the arbitrary channel gain g(x,x′) can be obtained by
substituting (2) into (1) and replacing f with its estimate.

3. ADAPTIVE BAYESIAN CG CARTOGRAPHY
In this section, we propose a two-layer Bayesian model for
the SLF, as well as, an MCMC-based approach for inference.
Furthermore, an adaptive data acquisition strategy to select
informative measurements is introduced.

3.1. Field estimation via Markov chain Monte Carlo
Let A consist of two disjoint homogeneous regions A0 :=
{x|E[f(x)] = µf0 ,Var[f(x)] = σ2

f0
,x ∈ A} and A1 :=

{x|E[f(x)] = µf1 ,Var[f(x)] = σ2
f1
,x ∈ A}, giving rise to

a hidden label field z := [z(x̃1), . . . , z(x̃Ng )]> ∈ {0, 1}Ng

of binary labels with z(x̃i) = k if x̃i ∈ Ak ∀i, and k = 0, 1.
We then model the conditional distribution of f(x̃i) as

f(x̃i)|z(x̃i) = k ∼ N (µfk , σ
2
fk

), (4)

while the Ising prior [17], which is a binary version of the
discrete MRF Potts prior [15], is assigned to z to capture
the dependency among spatially correlated labels. By the
Hammersley-Clifford theorem [18], the Ising prior of z fol-
lows a Gibbs distribution

p(z|β) =
1

C(β)
exp


β

Ng∑

i=1

∑

j∈N (x̃i)

δ(z(x̃j) = z(x̃i))


 (5)

where N (x̃i) is a set of indicies associated with 1-hop
neighbors of x̃i on the rectangular grid, β is the gran-
ularity coefficient to control the degree of homogeneity
in z, δ(·) is the Kronecker delta function, and C(β) :=∑
z∈Z exp

[
β
∑Ng

i=1

∑
j∈N (x̃i)

δ(z(x̃j) = z(x̃i))
]

is the par-

tition function with Z := {0, 1}Ng . By assuming conditional
independence of {f(x̃i)}Ng

i=1 given z, the resulting model is
referred to as the Gauss-Potts model [19] with two labels.

Let νt be independent and identically distributed (i.i.d)
Gaussian with zero mean and variance σ2

ν , and θ denote
the known parameter vector including σ2

ν , β, and θf :=
[µf0 , µf1 , σ

2
f0
, σ2
f1

]>. The weight matrix Wt ∈ RNg×t is
constructed with columns equal to wτ :=[w(xn(τ),xn′(τ), x̃1),

. . . , w(xn(τ),xn′(τ), x̃Ng )]> ∈ RNg of the link xn(τ)–xn′(τ)

for τ = 1, . . . , t. Then, one can cast Bayesian CG cartogra-
phy by writing the joint posterior as

p(f , z,θ|št) ∝ p(št|f , σ2
ν)p(f |z,θf )p(z|β)p(θ), (6)

where p(št|f , σ2
ν) ∼ N (W>

t f , σ
2
νIT ) is the likelihood, and

p(f |z,θf ), p(z|β), and p(θ) are the priors of {f , z,θ}, re-
spectively. By utilizing the posterior in (6), the MMSE esti-
mator of f is found as f̂MMSE := E[f |z = ẑMAP, št], where
z is fixed to the marginal MAP estimate of z, i.e., ẑMAP =
arg maxz p(z|št).

Although the suggested estimators have been advo-
cated [20, 21], analytical solutions are not available due
to the complex form of the posterior in (6) for marginaliza-
tion or maximization. To bypass this challenge, one can use
samples generated from the posterior in (6) as its proxy and
then numerically obtain the desired estimators from those
samples. MCMC is a class of algorithms to generate samples
from a complex distribution [16]. Among MCMC methods,
Gibbs sampling is particularly suitable for this work. It draws
samples following the target distribution (e.g., the posterior
in (6)) by sweeping through each variable to sample from
its conditional distribution while fixing the others to their
up-to-date values. Although the samples at early iterations of
Gibbs sampling with random initialization are not represen-
tative of the desired distribution (such duration is called the
burn-in period NBurn), the theory of MCMC guarantees that
the stationary distribution of those samples is matched with
the target distribution [16].

Gibbs sampling requires only the proportionality of the
conditional distribution, as described in Alg. 1. Particularly
for the posterior conditional of f , it is easy to show
p(f |št, z,θ) ∝ p(št|f , σ2

ν)p(f |z,θf ) ∼ N (µ̌f |z,Σf |z),
(7)

where
Σf |z :=

(
(σ2
ν)−1WtW

>
t + ∆−1

f |z

)−1

(8)

µ̌f |z := Σf |z

(
(σ2
ν)−1Wtšt + ∆−1

f |zµf |z

)
(9)

since p(f |z,θf ) followsN (µf |z,∆f |z) by (4), withµf |z :=

E[f |z] and ∆f |z := diag({Var[fi|zi]}Ng

i=1) with fi :=
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Algorithm 1 Generic Gibbs sampler for f and z

Input: z(0), θ, št, NBurn, and NIter.
1: for l = 1 to NIter do
2: Generate f (l) ∼ p(f |št, z(l−1),θ) in (7)
3: Generate z(l) ∼ p(z|št,f (l),θ) via Alg. 2
4: end for
5: return S :=

{
f (l), z(l)

}NIter

l=NBurn+1

f(x̃i) and zi := z(x̃i). Hence, f can be easily simulated
by a standard sampling method. On the other hand, an-
other Gibbs sampler is required to simulate p(z|št,f ,θ) ∝
p(f |z,θf )p(z|β) to avoid the intractable computation of
C(β) in (5). Let z−i and zN (x̃i) represent replicas of z
without its i-th entry, and only with the entries of N (x̃i),
respectively. By the Markovianity of z and conditional inde-
pendence between fi and fj ∀i 6= j given z, the conditional
distribution of zi is given by

p(zi|z−i, št,f ,θ) ∝ exp


`(zi) + β

∑

j∈N (x̃i)

δ(zj = zi)


 (10)

where `(zi) := ln p(fi|zi,θf ). After evaluating (10) for zi =
0, 1 and normalizing, one can obtain p(zi = 1|z−i, št,f ,θ) =
(1 + hi)

−1, where

hi := exp

[
`(zi = 0)−`(zi = 1)+

∑

j∈N (x̃i)

β(1−2zj)

]
(11)

with δ(zj = 0) − δ(zj = 1) = 1 − 2zj . Then, the sam-
ple of z can be obtained via the single-site Gibbs sampler by
using (11), as summarized in Alg. 2.

Building on [20], the elementwise MAP estimator of z
and its sample-based approximation are

ẑi,MAP = arg max
zi∈{0,1}

p(zi|št)

' arg max
zi∈{0,1}

1

|S|

NIter∑

l=NBurn+1

δ(z
(l)
i = zi) (12)

for i = 1, . . . , Ng . After obtaining ẑMAP, the sample-based
elementwise MMSE estimator of f similarly follows as

f̂i,MMSE '
1

|Si|

NIter∑

l=NBurn+1

f
(l)
i δ(z

(l)
i = ẑi,MAP), ∀i, (13)

where Si ⊂ S is a subset of samples such that z(l)
i = ẑi,MAP

for l = NBurn + 1, . . . , NIter.
3.2. Adaptive data acquisition via uncertainty sampling
The proposed Bayesian CG cartography accounts for the un-
certainty of f , through the variance in (8). Therefore, one can
adaptively collect a measurement (or a mini-batch of mea-
surements) when a set of available sensing radio pairs are re-
vealed, with the goal of reducing the uncertainty of f . Note
that the resulting sampling algorithm has been studied under
the name of active learning [22] in the machine learning com-
munity. To this end, the conditional entropy [23] is considered
as an uncertainty measure of f at time slot t, namely,

Algorithm 2 Single-site Gibbs sampler for z

Input: f (l) and z(l−1)

1: Initialize ζ(l) = z(l−1)

2: for i = 1 to Ng do
3: Obtain hi in (11) with z = ζ(l) and f = f (l)

4: if u ∼ U(0,1) < (1 + hi)
−1 then

5: Set ζ(l)
i = 1

6: else
7: Set ζ(l)

i = 0
8: end if
9: end for

10: return z(l) = ζ(l)

Algorithm 3 Adaptive Bayesian CG cartography

Input: z(0), š0, θ, NBurn, NIter, g0 and γ.
1: for τ = 0, 1, . . . do
2: Obtain S(τ) via Alg. 1 (z(0),θ, šτ , NBurn, NIter)
3: Obtain ẑ(τ)

MAP from (12) by using S(τ)

4: Obtain f̂ (τ)
MMSE from (13) by using ẑ(τ)

MAP and S(τ)

5: Calculate ū(w) in (16) for w ∈ Wτ+1 by using S(τ)

6: Collect šτ+1 from sensors associated with max ū(w)

7: Set šτ+1 = [š>τ , šτ+1]> and z(0) = ẑ
(τ)
MAP

8: end for
9: Consider arbitrary locations {x,x′} ∈ A

10: Estimate ŝ(x,x′) via (2) by using f̂MMSE
11: Estimate ĝ(x,x′) via (1) by using g0, γ, and ŝ(x,x′)

Ht := H(f |št, z,θ) =
∑

z′∈Z

∫

š′t,θ
′
p(š′t, z

′,θ′)

×H(f |št = š′t, z = z′,θ = θ′)dθ′dš′t (14)

where H(f |št = š′t, z = z′,θ = θ′) := −
∫
p(f |š′t, z′,θ′)

× ln p(f |š′t, z′,θ′)df =
(

ln
∣∣Σf |z′

∣∣ + Ng(1 + ln 2π)
)
/2

and | · | denotes matrix determinant. To obtain št+1, one
can choose a pair of sensors, or equivalently find wt+1,
minimizing H(f |št+1, z,θ). Once expressing Ht+1 =
Ht −

∑
z′∈Z

∫
š′t+1,θ

′ p(š
′
t+1, z

′,θ′)q(z′,θ′,wt+1)dθ′dš′t+1

with q(z,θ,w) := ln
(
1 + (σ2

ν)−1w>Σf |zw
)
/2 by use

of the matrix determinant identity lemma [24, Chapter 18],
given št = š′t, it yields wt+1 as the solution of

(P1) max
w∈Wt+1

Ez,θ|št=š′t
[q(z,θ,w)]

=
∑

z′∈Z

∫

θ′
p(z′,θ′|št = š′t)q(z

′,θ′,w)dθ′ (15)

where Wt+1 is a set of weight vectors found from locations
of available sensing radio pairs at time slot t+ 1.

Although (P1) can be solved in a greedy fashion when θ
is fixed as in this work, evaluating Ez,θ|št=š′t

[q(z,θ,w)] is
still intractable for large Ng since |Z| = 2Ng . Fortunately,
the samples from Alg. 1 help to approximate
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(a) Test bed
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Fig. 1. Configuration of the test bed, and SLF reconstructions by the proposed and ridge-regularized LS methods.
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Fig. 2. Estimation error of z versus time slots.

E[q(z,θ,w)] ' 1

|S|

NIter∑

l=NBurn+1

q(z(l),θ(l),w) =: ū(w). (16)

Therefore, št+1 can be obtained from the pair of sensors cor-
responding to w with the maximum value of ū(w) in (16).
Note that the proposed adaptive sampling scheme can be eas-
ily extended to the case of the mini-batch of size NBatch by
finding weight vectors associated with NBatch largest values
of ū(w) in (16).

The overall algorithm for adaptive Bayesian CG cartogra-
phy is tabulated in Alg. 3.

4. NUMERICAL TESTS
This section describes numerical tests using the real data
of [12] to validate the performance of the proposed frame-
work for CG cartography. The test bed is depicted in Fig. 1(a),
where A = [0.5, 20.5]2 is a square with sides of 20 feet (ft),
over which a grid {x̃i}Ng

i=1 := {1, 41}2 of Ng = 1, 681 points
is defined. A collection of N = 80 sensors measure the
channel attenuation at 2.425 GHz between pairs of sensor
positions, marked with the crosses. To estimate g0 and γ
in (1) using the approach in [12], a first set of 2, 400 mea-
surements was obtained before placing the artificial structure
in Fig. 1(a). Afterwards, the structure in Fig. 1(a) was assem-
bled, and {gτ}2,380

τ=1 were obtained and calibrated to obtain
measurements št = [š1, . . . , š2,380]>.

To test the proposed algorithm, {wτ} were constructed
withw in (3); Alg. 3 was initialized with z(0) randomly drawn
from {0, 1}Ng , and 1, 000 measurements for š0 chosen uni-

formly at random. The remaining 1, 380 measurements were
used to test Alg. 3. Other parameters were set to σ2

ν = 64,
β = 2.73, and θf = [0, 0.3, 10−1, 10−1]>, NBurn = 60, and
NIter = 250, throughout the simulated tests. Per time slot t,
Wt was found by weight vectors associated with 150 mea-
surements chosen uniformly at random, from the remaining
1, 380 measurements without replacement, and then NBatch =
100 measurements were collected. As a competing alterna-
tive, the ridge-regularized LS estimator f̂LS = (WtW

>
t +

ωC−1
f )−1Wtšt was also tested [12], where ω is a regulariza-

tion parameter and Cf is a spatial covariance matrix model-
ing the similarity between points x and x′ as Cf (x,x′) =
σ2
s exp[−‖x− x′‖2/κ] [6], with σ2

s = κ = 1, and ω = 79.9;
see also [11].

Fig. 1(c) depicts the reconstructed SLF by Alg. 3 at
t = 6, or with 1, 600 measurements. Comparison with the
SLF reconstructed with the full data (2, 380 measurements) in
Fig. 1(b) demonstrates the effectiveness of the proposed algo-
rithm in identifying the structure of the propagation medium
with adaptively chosen fewer measurements. The blurry
image of the SLF in Fig. 1(d) reconstructed by the ridge-
regularized LS with 1, 600 measurements chosen uniformly
at random showcases the benefit of adopting the Gauss-Potts
model for CG cartography.

Efficacy of the adaptive data acquisition method was also
validated by measuring the estimation error of z as ‖ẑ(t)

MAP −
ẑ0‖1/Ng , where ẑ0 is the estimate of z with the full data.
Fig. 2 displays the estimation error of z by Alg. 3 with ran-
dom and uncertainty sampling methods, obtained by averag-
ing the error over 10 independent Monte Carlo runs. This
plot illustrates that higher estimation accuracy is achievable
by adaptively collecting fewer samples.

5. CONCLUDING SUMMARY
This paper developed a novel adaptive Bayesian channel gain
cartography algorithm capable of constructing maps that pro-
vide the channel gain between arbitrary locations in a region
of interest while revealing the structure of the propagation
medium through a spatial loss field, equipped with adaptive
data acquisition capability. Efficacy of the novel algorithm
was validated through real data tests.

3557



6. REFERENCES

[1] S.-J. Kim, E. Dall’Anese, and G. B. Giannakis, “Co-
operative spectrum sensing for cognitive radios using
kriged Kalman filtering,” IEEE J. Sel. Topics Sig. Pro-
cess., vol. 5, no. 1, pp. 24–36, Feb. 2011.

[2] E. Axell, G. Leus, and E. G. Larsson, “Overview of
spectrum sensing for cognitive radio,” in Proc. Cogni-
tive Inf. Process., 2010, pp. 322–327.

[3] Q. Zhao and B. M. Sadler, “A survey of dynamic spec-
trum access,” IEEE Sig. Process. Mag., vol. 24, no. 3,
pp. 79–89, 2007.

[4] FederaluCommunicationsuCommission, “FCC 11-
131,” Unlicensed Operation in the TV Broadcast Bands,
2011.

[5] S.-J. Kim, E. Dall’Anese, J. A. Bazerque, K. Rajawat,
and G. B. Giannakis, “Advances in spectrum sensing
and cross-layer design for cognitive radio networks,” in
Academic Press Library in Signal Processing: Commu-
nications and Radar Signal Processing: 2, chapter 9,
pp. 471–497. Academic Press, 2013.

[6] P. Agrawal and N. Patwari, “Correlated link shadow
fading in multi-hop wireless networks,” IEEE Trans.
Wireless Commun., vol. 8, no. 9, pp. 4024–4036, Aug.
2009.

[7] N. Patwari and P. Agrawal, “Effects of correlated shad-
owing: Connectivity, localization, and RF tomography,”
in Int. Conf. Info. Process. Sensor Networks, St. Louis,
MO, Apr. 2008, pp. 82–93.

[8] J. Wilson and N. Patwari, “Radio tomographic imaging
with wireless networks,” IEEE Trans. Mobile Comput.,
vol. 9, no. 5, pp. 621–632, 2010.

[9] J. Wilson and N. Patwari, “See-through walls: Motion
tracking using variance-based radio tomography net-
works,” IEEE Trans. Mobile Comput., vol. 10, no. 5,
pp. 612–621, 2011.

[10] E. Dall’Anese, S.-J. Kim, and G. B. Giannakis, “Chan-
nel gain map tracking via distributed kriging,” IEEE
Trans. Veh. Technol., vol. 60, no. 3, pp. 1205–1211,
2011.

[11] D. Lee, S.-J. Kim, and G. B. Giannakis, “Channel gain
cartography for cognitive radios leveraging low rank and
sparsity,” IEEE Trans. Wireless Commun., vol. 16, no.
9, pp. 5953 – 5966, Nov. 2017.

[12] B. R. Hamilton, X. Ma, R. J. Baxley, and S. M. Mat-
echik, “Propagation modeling for radio frequency to-
mography in wireless networks,” IEEE J. Sel. Topics
Sig. Proc., vol. 8, no. 1, pp. 55–65, Feb. 2014.

[13] D. Romero, D. Lee, and G. B. Giannakis, “Blind chan-
nel gain cartography,” in Proc. 2016 IEEE Global Conf.
on Signal and Info. Process., Washington, D.C., Dec.
2016, pp. 1110–1115.

[14] J. Wilson and N. Patwari, “Radio tomographic imaging
with wireless networks,” IEEE Trans. Mobile Comput.,
vol. 9, no. 5, pp. 621–632, Jan. 2010.

[15] D. Higdon, Spatial applications of Markov chain Monte
Carlo for Bayesian inference, Ph.D. thesis, Dept. Stat.,
Univ. Washington, Seattle, WA, 1994.

[16] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter,
Markov Chain Monte Carlo in Practice, Chapman and
Hall, London, 1996.

[17] D. Smith and M. Smith, “Estimation of binary Markov
random fields using Markov chain Monte Carlo,” J.
Comput. Graph. Stats., vol. 15, no. 1, pp. 207 – 227,
2006.

[18] J. Hammersley and P. Clifford, “Markov field on finite
graphs and lattices,” Unpublished manuscript, 1971.

[19] H. Ayasso and A. Mohammad-Djafari, “Joint NDT im-
age restoration and segmentation using Gauss-Markov-
Potts models and variational Bayesian computation,”
IEEE Trans. Image Process., vol. 19, no. 9, pp. 2265
– 2277, Sep. 2010.

[20] G. Kail, J.-Y. Tourneret, F. Hlawatsch, and N. Dobi-
geon, “Blind deconvolution of sparse pulse sequences
under a minimum distance constraint: a partially col-
lapsed Gibbs sampler method,” IEEE Trans. Sig. Proc.,
vol. 60, no. 6, pp. 2727 – 2743, 2012.

[21] N. Zhao, A. Basarab, D. Kouamé, , and J.-Y. Tourneret,
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