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ABSTRACT
Spectrum cartography constructs maps of metrics such as
channel gain or received signal power across a geographic
area of interest using measurements of spatially distributed
sensors. Applications of these maps include network plan-
ning, interference coordination, power control, localization,
and cognitive radio to name a few. Existing spectrum car-
tography methods necessitate knowledge of sensor locations,
but such locations cannot be accurately determined from pilot
positioning signals (such as those in LTE or GPS) in indoor
or dense urban scenarios due to multipath. To circumvent this
limitation, this paper proposes localization-free cartography,
where spectral maps are directly constructed from features
of these positioning signals rather than from location esti-
mates. The proposed algorithm capitalizes on the framework
of kernel-based learning and offers improved prediction per-
formance relative to existing alternatives, as demonstrated by
a simulation study in a street canyon.

Index Terms— Spectrum cartography, localization-free
cartography, kernel-based learning, spectrum map.

1. INTRODUCTION

Spectrum cartography constructs maps of a certain channel
metric, such as received signal power, interference power,
or channel gain over the geographical area of interest [1–3].
Spectral maps are of utmost interest in wireless networks, es-
pecially for tasks such as network planning, interference coor-
dination, power control, and dynamic spectrum access [4–6].
Further applications include source localization [2].

Existing approaches typically apply some spatial interpo-
lation or regression technique to measurements collected by
spatially distributed sensors. Examples of these approaches
for mapping power over space include kriging [1, 7, 8], com-
pressive sensing [3], matrix completion [9], dictionary learn-
ing [10, 11], Bayesian models [12], and adaptive radial basis
functions [13]. Schemes to map power spectral density (PSD)
have also been devised by exploiting the sparsity of power dis-
tribution over space and frequency [2] and by leveraging the
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frameworks of thin-plate spline regression [4, 14] and kernel-
based learning [4]. Further schemes have been proposed to
map alternative metrics such as channel gain [15–17].

Since all the aforementioned schemes rely on the knowl-
edge of the sensor locations, they will be collectively referred
to as localization-based cartography. In practice, location is
seldom known and therefore it must be estimated from fea-
tures such as the RSSI, the time (difference) of arrival, or the
direction of arrival of positioning pilot signals transmitted by
satellites (e.g. in GPS) or terrestrial base stations (e.g. in LTE
or WiFi [18]). Unfortunately, accurate location estimates are
often not available in practice due to propagation phenom-
ena affecting those pilot signals such as multipath, which lim-
its the applicability of existing cartography techniques, espe-
cially in indoor and dense urban scenarios.

The main contribution of this paper is to circumvent this
limitation by proposing localization-free cartography. The
idea is that the localization step introduces significant errors
in the spectrum map estimation when the aforementioned
features are not reliable. Bypassing this step, the proposed
approach obtains spectrum maps indexed directly by (or
as a function of) the features of the received pilots. As a
byproduct of skipping the localization step, the resulting car-
tography algorithm is also computationally less expensive
than its localization-based counterparts. For simplicity, this
work focuses on constructing power maps, but the proposed
algorithm carries over to other metrics. Such an algorithm
is developed within the framework of kernel-based learning
not only because of the high simplicity, flexibility, and per-
formance of kernel-based estimators, but also because it has
well-documented merits in spectrum cartography [4, 14].

The rest of this paper is organized as follows: Sec. 2 de-
scribes the problem and reviews location-based cartography.
Sec. 3 presents the main contribution of the paper, which is
localization-free cartography. Simulations and conclusions
are respectively provided in Sec. 4 and Sec. 5.

2. PRELIMINARIES

The goal is to determine the power p(x) of a certain channel,
termed channel-to-map (C2M), at every location x ∈ X of
the geographical region X ⊂ R2 of interest. To this end,
N sensors are deployed across X at locations {xn}Nn=1 not
necessarily known. The n-th sensor acquires a measurement
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p̃n of the power p(xn) at its location xn.
In localization-based cartography, a fusion center is ide-

ally given pairs {(xn, p̃n)}Nn=1, which include the exact sen-
sor locations {xn}Nn=1, and obtains a function estimate p̂(xq)
that provides the power of the C2M at any query location
xq ∈ X . With this function, a node at xq can determine
the power of the C2M if it knows xq . In practice, however,
location is typically unknown and hence the n-th sensor must
estimate xn by relying on pilot signals {ym,n[k]}Mm=1, where
ym,n[k] denotes the k-th sample of the m-th pilot signal re-
ceived by the n-th sensor. For convenience, form the M ×K
matrix Yn whose (m, k)-th entry is ym,n[k]. From Yn, the
n-th sensor computes an estimate x̂n(Yn) of xn by means
of some localization algorithm; see Sec. 4 for a specific ex-
ample. The fusion center then uses {(x̂n, p̃n)}Nn=1 to obtain
an estimate p̂(x) of the function p(x). Therefore, if the lo-
cation estimates {x̂n}Nn=1 are noisy, so will be p̂(x). If a
node at a query location xq wishes to know the power of the
C2M, it will use the pilot signals Yq to obtain an estimate
x̂q := x̂(Yq) of its location and will evaluate the map esti-
mate as p̂(x̂q). Here, Yq is a matrix whose (m, k)-th entry
is given by the k-th sample of the m-th pilot signal ym,q[k]
at the query location xq . Thus, such an evaluation has two
sources of error: first, the location estimation error in x̂q and,
second, the map estimation error in p̂(xq).

From a more general perspective, the function that is ac-
tually learned in this approach can be expressed as p(Y ) :=
p(x̂(Y )), where x̂(Y ) denotes the output of the chosen lo-
calization algorithm when the pilot signals are given by Y .
From this perspective, the problem that is being solved is:
given {(Yn, p̃n)}Nn=1, find an estimate p̂(Y ) of p(Y ). Indeed,
localization-based cartography seeks an estimate for the latter
function within a certain family of functions that can be ex-
pressed as p(Y ) = g(x̂(Y )) for some function g : X → R.
The next section investigates estimates with alternative forms,
which will be preferable whenever x̂(Y ) is not an accurate
estimator of x.

Remark 1 One may argue that a node can determine the
power of the C2M at its location more efficiently by measuring
it rather than by locating itself and evaluating a map. While
this may be the case for a single C2M, determining the power
of many C2Ms, or other channel parameters such as the im-
pulse response, may incur a higher cost. In these cases, the
benefits of spectrum cartography would be more significant.

3. LOCALIZATION-FREE CARTOGRAPHY

This section proposes localization-free cartography, which
bypasses the localization step involved in all existing cartog-
raphy approaches. To this end, the localization-free cartog-
raphy problem is formulated as a function estimation task in
Sec. 3.1 and solved via kernel-based learning in Sec. 3.2.

3.1. Map Estimate as a Function Composition

From an abstract perspective, spectrum cartography amounts
to learning a function p : CM×K → R that provides the
power p(Y ) of the C2M at a location in X where the pilot
signals Y are received. The direct approach to spectrum car-
tography would be to learn such a function directly from data
{(Yn, p̃n)}Nn=1. Since learning a multivariate function up to
a reasonable accuracy generally requires the number of data
points to be several times larger than the number of input vari-
ables, the direct approach would need N to be significantly
larger than MK, which is prohibitively large since MK is
typically in the order of hundreds or thousands. For this rea-
son, existing (localization-based) cartography schemes do not
follow such a direct approach. Instead, they avoid its com-
plexity by confining the search for estimates of p(Y ) to those
functions that can be expressed as the composition of a fixed
function x̂ : CM×K → X ⊂ R2, where x̂(Y ) corresponds
to the output of a localization algorithm when the pilot sig-
nals are Y , and a map function g : X ⊂ R2 → R that needs
to be determined; (cf. Sec. 2). Clearly, finding g requires
a significantly smaller N than learning the general function
p : CM×K → R since g has only two scalar inputs. When
x̂(Y ) is a reasonable estimate of the location x at which Y
has been observed, such a localization-based approach works
well. However, due to propagation effects impacting the pi-
lot signals in Y , x̂(Y ) may be very different from x and it
is easy to see that this drastically hinders the estimation of
g. From this observation, it can be concluded that the two
scalar outputs of x̂(Y ) fail to capture the relevant informa-
tion in Y : more outputs are needed. In summary, neither the
above direct approach, which estimates a function with MK
inputs, nor the localization-based approach, which estimates a
function of 2 inputs, are appropriate in presence of multipath
effects, as is the case in indoors or urban scenarios.

To tackle this difficulty, the proposed approach is to es-
timate a function whose number of inputs is larger than 2
and smaller than MK. To answer the question on which in-
puts should be used, it is worth delving further into why the
above localization-based approach fails. Localization algo-
rithms typically proceed in two steps: first, they extract some
features from Y , and then they feed these features to an algo-
rithmL that exploits a spatial model to determine the location.
Those features comprise e.g. estimates of distance, time (dif-
ference) of arrival, or angle of arrival. If φ(Y ) ∈ D ⊂ RM

denotes the vector stacking theseM features and l(φ) denotes
the output of algorithm L, it follows that x̂(Y ) = l(φ(Y )).
The root of the problem is therefore that the model assumed
by L is inaccurate: it typically assumes free space propaga-
tion, which would imply a certain consistency between the
features in φ(Y ) that does not hold in presence of multipath.
Combining these observations, a sensible approach is to (i)
preserve the dimensionality reduction capability of φ (from
MK toM ); and (ii) avoid the error introduced by l(φ). Thus,
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one can seek localization-free function estimates of the form
p̂LF(Y ) = f(φ(Y )) for some f : D ⊂ RM → R. In this
localization-free setup, φ(Y ) comprises M features of the
pilot signals, but they need not be those used by the localiza-
tion algorithms (e.g. time (difference) or angle of arrival). In
short, whereas localization-based cartography learns a func-
tion of the spatial location estimated from features of the pi-
lot signals, the proposed localization-free approach directly
learns a function of such features.

3.2. Kernel-based Power Map Learning

This section provides a kernel-based learning algorithm to
learn the function f introduced in Sec. 3.1. Given pairs
{(φn, p̃n)}Nn=1, where φn := φ(Yn), the regression problem
is informally to find f such that f(φ(Y )) ≈ p(Y ) for all Y .
To address this problem, one must specify in which family of
functions such an f must be found. In kernel-based learning,
one seeks f in a set known as a reproducing-kernel Hilbert
space (RKHS) and given by

F :=

{
f : f(φ) =

∞∑
i=1

αiκ(φ, φ̄i), φ̄i ∈ D, αi ∈ R

}
,

where κ : D × D → R is a symmetric and positive def-
inite function known as reproducing kernel [19]. A com-
mon choice is the so-called Gaussian radial basis function
κ(φ,φ′) := exp

[
−‖φ− φ′‖2/(2σ2)

]
, where σ is a param-

eter selected by the user. Like any Hilbert space, F has an
associated inner product and norm. For an RKHS function
f(φ) =

∑∞
i=1 αiκ(φ, φ̄i), the latter is given by

‖f‖2F :=

∞∑
i=1

∞∑
j=1

αiαjκ(φ̄i, φ̄j). (1)

Kernel-based learning typically solves a problem of the form

f̂ = arg min
f∈F

1

N

N∑
n=1

L (p̃n,φn, f(φn)) + Ω(‖f‖F ), (2)

where L is a loss function quantifying the deviation between
the observations {p̃n}Nn=1 and the predictions {f(φn)}Nn=1

returned by a candidate f ; and Ω is an increasing function.
The first term in (2) promotes function estimates that fit well
the data whereas the second term promotes “smooth” esti-
mates; where the notion of smoothness is determined by the
RKHS norm ‖ · ‖F . Typical choices are L (p̃n,φn, f(φn)) =

(p̃n − f(φn))2 and Ω(‖f‖F ) = λ ‖f‖2F , where λ > 0 is
termed regularization parameter and balances smoothness and
goodness of fit. For this choice, f̂ is termed kernel ridge re-
gression estimate [20], and is the one pursued here for sim-
plicity. The goal is therefore to solve (2). However, since
F is infinite dimensional in general, (2) cannot be directly
solved. Fortunately, one can invoke the representer theo-
rem [19], which states that the solution to (2) is of the form

f̂(φ) =

N∑
n=1

αnκ(φ,φn). (3)

for some {αn}Nn=1. Although the representer theorem does
not provide the coefficients {αn}Nn=1, they can be obtained
by substituting (3) into (2) and solving the resulting problem
with respect to these coefficients. Applying this procedure for
kernel ridge regression results in the problem

α̂ = arg min
α

1

N
‖p̃−Kα‖2 + λα>Kα, (4)

where α := [α1, ..., αN ]
>, p̃ := [p̃1, ..., p̃N ]

>, and K is an
N ×N matrix whose (n, n′)-th entry is κ(φn,φn′). Prob-
lem (4) can be solved in closed form as

α̂ = (K + λNIN )
−1
p̃. (5)

The estimate f̂ solving (2) for kernel ridge regression can be
recovered by substituting (5) into (3). To obtain the predicted
power of the C2M at a query location xq where the pilot sig-
nals are given by Yq , one just evaluates p̂LF(Yq) = f̂(φ(Yq)).

4. NUMERICAL TESTS

This section evaluates the performance of localization-free
cartography in a scenario with multipath. The latter is a urban
canyon or street canyon, which comprises two parallel verti-
cal planes modeling the walls (or buildings) at each side of
the street and a horizontal plane modeling the ground. Prop-
agation is characterized by the so called six-ray model [21],
which accounts for the direct path, the ground reflection, 2
first-order wall reflections, and 2 wall-to-wall second-order
reflections. The sensors are spread uniformly at random over
the street, which is 250 m long and 30 m wide.

For simplicity, the pilot signals are impulses centered at
time 0 filtered to the pilot channel with bandwidth 5 MHz and
carrier frequency 800 MHz, which implies that Yn comprises
the impulse responses of the bandlimited channels between
the M transmitters of pilot signals and the n-th sensor. For
simplicity and robustness to timing errors, the features used
by the proposed localization-free algorithm equal the cen-
ter of mass of the corresponding impulse responses, that is,
[φn]m :=

∑K
k=1 tk|ym,n[k]|2/

∑K
k=1 |ym,n[k]|2 where tk is

the time of the k-th sample.
The proposed algorithm, which uses Gaussian radial basis

functions with σ = 30 m, is compared with its localization-
based counterpart, which is a special case of the estimators
in [2, 4, 22] for estimating power maps. We use Gaussian
RBFs because they are universal kernels [23], i.e., able
to approximate arbitrary functions. For localization, the
square-range-based least squares (SR-LS) algorithm [24]
is applied to the time-of-arrival measurements obtained
from the pilots {Yn}Nn=1. Function g (cf. Sec. 2) is ob-
tained by applying a similar procedure as in the proposed
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Fig. 1: (a) True map, (b) localization-free, and (c)
localization-based estimated maps (λ = 3×10−3,N = 160).

localization-free algorithm: Given {(x̂n, p̃n)}Nn=1, the esti-
mate of g is given by g(x̂q) = κ′>(x̂q)β̂ where κ′(x̂q) :=

[κ′(x̂q, x̂1), ..., κ′(x̂q, x̂N )]
>, β̂ = (K′ + λNIN )−1p̃, and

K ′ is an N ×N matrix with (n, n′)-th entry κ′(x̂n, x̂n′) and
κ is a Gaussian radial basis function with σ = 35 m.

Quantitative evaluation will compare the normalized
mean square error (NMSE) defined as NMSE = E{|p(x) −
p̂(Y (x) + Υ, T )|2}/E{|p(x)− p̄|2} where Y (x) comprises
the received pilot signals at location x, Υ represents noise,
p̄ is the spatial average of p(x), and T is the training set,
defined as T := {(Yn + Υn, p̃n + εn)}Nn=1 with Υn and
εn representing noise. Specifically, {εn}Nn=1 are independent
log-normal random variables with zero-mean and standard
deviation 0.5 dB (p̃n is measured in dBW). Furthermore E{·}
denotes expectation over a random location x uniformly
distributed across X , the locations of the sensors, and noise.

The true map generated through the canyon model is de-
picted to the left of Fig. 1. The middle and right panels re-
spectively show the localization-free and localization-based
map estimates, which are obtained by placing a query sen-
sor at each location. Black crosses indicate the positions of
the N sensors used to estimate the map. As expected, the
estimation is better in areas with more sensors. Visually, the
quality of the localization-free estimate is higher than that of
the localization-based estimate due to multipath.

Fig. 2a shows the NMSE as a function of N for differ-
ent numbers M of pilot signals. Each point is obtained by

20 40 60 80 100 120 140 160

Number of sensors, N

0.6

0.8

1

1.2

1.4

N
M

S
E

M=1

M=2

M=3

20 40 60 80 100 120 140 160

Number of sensors, N

0.6

0.8

1

1.2

N
M

S
E

LocFree

LocBased

Fig. 2: (a) Estimated map NMSE for different values of num-
ber of features, M and sensors, N ; and (b) Performance
comparison between the localization-free cartography and the
localization-based cartography (λ = 3× 10−3,σ = 30 m).

averaging 200 independent Monte Carlo iterations. As antici-
pated, performance improves with N . Furthermore, for fixed
N , the NMSE is non-increasing with M , yet M = 2 and 3
yield roughly the same NMSE because of the geometry of the
simulation setup.

Fig. 2b shows the NMSE as a function of the number of
sensors N used to estimate pLF and pLB. With significant
evidence, one may claim that the proposed localization-free
cartography scheme outperforms its localization-based coun-
terpart when N > 60 since the error bars in Fig. 2 span
over 6 standard deviations of the NMSE across realizations.
The reason for a poorer performance of the localization-based
scheme is that multipath propagation can mislead the local-
ization algorithm, inducing errors in location estimation that
increase deviations in the map estimation as well.

5. CONCLUSIONS

Localization-free cartography has been proposed as an alter-
native to classic localization-based schemes, which do not
operate properly when multipath impairs the propagation of
localization pilot signals. Kernel-ridge regression was ap-
plied to estimate power maps from features of those pilot
signals collected by a number of sensors. Simulations cor-
roborate the merits of localization-free cartography relative
to localization-based methods. Future research will include
an extensive simulation study in indoor environments and de-
velop distributed and online extensions.
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