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ABSTRACT

In this paper, we present a calibration algorithm for adoustctor
sensors arranged in a uniform linear array configurationddso,
we do not use a calibrator source, instead we leverage thaiffoe
blocks present in the data covariance matrix. We develaaties-
timators for estimating sensor gains and phases. Furtleedjseuss
the differences of the presented blind calibration apgrdacacous-
tic vector sensor arrays in comparison with the approachdoustic
pressure sensor arrays. In order to validate the proposedi dali-
bration algorithm, simulation results for direction-afigal (DOA)
estimation with an uncalibrated and calibrated unifornedinarray
based on minimum variance distortion less response andpheult
signal classification algorithms are presented. The clidm per-
formance is analyzed using the Cramér-Rao lower boundedDtbA
estimates.

Index Terms— Acoustic vector sensor, direction-of-arrival es-
timation, gain estimation, phase estimation, self calibra

1. INTRODUCTION

Direction-of-arrival (DOA) estimation of outdoor acoussources
using a network of passive sensors is crucial for groundesiirv
lance [1] and target tracking [2]. Traditionally, microptedacoustic

time to time. In this paper, we focus on gain and phase céiira
of AVS arrays.

Currently, sophisticated calibration techniques are eyga to
correct for the gain and phase mismatch between the preasdre
particle velocity channels [11, 12], e.g., using a calibraource in
a controlled environment. The data acquisition elect®(¥écg., 0s-
cillator and amplifier) of the AVS drifts over period of timadh it
requires recalibration. Also, the lack of orthogonalityivibeen the
channels of the particle velocity transducers contribatéhe gain
and phase mismatch. This means that a calibrator source s t
deployed in the field or the AVSs in the array have to be brought
back to the calibration room. To avoid such complications,ex-
plore calibrator-source-free or blind calibration tecjugs for AVS
arrays arranged in a uniform linear array (ULA) configuratidhe
presented approach is inspired by the blind calibratiorhogefor
APS ULA presented in [13], wherein the Toeplitz structurehe
covariance matrix was utilized. An extension of this applot any
arbitrary array configuration was presented in [15]. Eveugh the
covariance matrix of the AVS ULA is not Toeplitz, it has Topl
blocks. Due to which, the AVS array cannot be treated as an APS
array with a larger aperture for calibration. We exploit gtauc-
ture in the Covariance matrix to create a linear system o&gojs
to estimate the unknown gain and phase uncertainties. Wisavill
discuss the differences between the calibration algoritrAVS ar-

pressure sensor (APS) arrays are deployed for such taske- Horays and APS arrays, which is a rather well-studied problemce

ever, with the advances in the sensor technology, transsltlcat
are capable of measuring vector quantities such as pavetbeity
are becoming practically feasible [3-5]. An acoustic vesensor
(AVS) is one such device that can measure both acousticyseess
and particle velocity at a given spatial location [6, 7]. dtaprises of
an omni-directional microphone and two (or three) parti@ocity
transducers each aligned along the coordinate axes efitfier for

R3) [5]. An array of AVSs has several advantages compared to a

equivalent aperture APS array [6, 8].

For DOA estimation using spatially distributed AVS or APS ar
rays, many advanced algorithms that yield highly accurstienates
are developed, such as minimum variance distortionleg®onse

(MVDR) beamformer [9] and subspace-based methods likeimult

ple signal classification (MUSIC) [10]. However, these aitjons
are highly sensitive to sensor position errors, bearingrgyrand
other modeling parameters such as relative gain and phage va
tions within as well as among sensors. Although with progeec
while building the array the positional and bearing erraas be
minimized, modeling parameters usually vary with time andi-e
ronmental conditions. Therefore, the array has to be akrfrom
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the gain and phase uncertainties are corrected for, angathbD OA
estimation technigue can be employed.

2. SYSTEM MODEL

Consider a ULA ofM AVSs. Each AVS consists of three elements
ﬁone pressure and two particle velocity transducers), kivhie de-
ote with the subscript®, X', and)’ throughout this paper. With the

notation,A o for M € {P,X,V}, we meanAp, Ar, andAy,
respectively.

Let us denote thenknowngain and phase parametersiasc
R3M and¢ € C3M respectively, where these vectors have compo-
nents related to the transducers in the array, i.e.,

= [vhwkwl] . and o= [oF. 0% 03] .

with length:\f vectorsy ,, = [Yag1-..Yamum]” and ¢y =
[@?ma | d?mm]T denoting the gain and phase vectors related
to the typeM transducer in the array.

Assume that there ar® far-field narrowband uncorrelated
sources with wavenumbér = 27 /X impinging on the array from
azimuth angle® = [6; 6 ... 0p]" € RP*. The received signal
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can be collected in(t) € C***! and is given by
r(t)y =

wheres(t) = [s1(t) s2(t) --- sp(t)]" € CP is the source sig-
nal vector,n(t) is the noise vector, and (0) = [a(61) a(f2) ---
a(fp)] € C*M*P s the array manifold matrix. Theéth column of
A(0) is given by the corresponding lengd{ AVS array steering
vector

diag(v) diag(¢) [A(0) s(t) + n(t)], (1)

a(fa) = [ap(0a) cos0a)ar(0a) sin(0a)an(0a)]",

= [ap (04) ax(0a) a3 (0a)]",

with

ap(la) = [1 gkteost0a) ejk(Mfl)lws(@d)]T e CMx1,

being the equivalent APS array steering vector. Here the inter-
element spacing.

In this work, we assume thai(¢) and n(¢) are uncorre-
lated, and that they are realizations of an independent @@l i

tically distributed (i.i.d.) complex Gaussian process hwitero
mean and unknown covariance matis = E {s(¢)s”(¢)} and

Ra = E{n(t)n"(t)}, respectively. Without loss of generality,
we assume thadRs is a diagonal matrix with unknown entries (i.e.,
sources are uncorrelated) aRg, = 21 (i.e., we absorb the factor

that models the noise difference between the pressure docitye
channels [16] in the calibration parameters).

3. ESTIMATION OF SENSOR GAINS

In this section, we derive a least-squares estimatogfoffo do so,
we process each subblock of the data covariance matrixaepar
to build a linear system of equationsdn From (3), we have

[[Rmnijl = [[Qmalijl Yaitha s, Vi, 5 =1,2,... M, (6)

where|-| denotes the modulus. Since the subbl@gk - is Toeplitz,
we have, for all — j = k — [, the following relation

[[Rrn]ij]
g <|[RMN1M|

) — log(tacs) + log(iin) @)
—log(¢ha,k) — log(¥ar)-

This is because, for all— j = k — [, |[Ran]ij| and|[Ran] ]
lie along the same diagonal and due to the Toeplitz structtitee
subblockQ rr, those terms are eliminated resulting in an equation
corresponding to the unknown gains. However, when only &fini
number of snapshots are available, (7) is not consistent, iNe can
collect the measuremen{®g (|[Ranr]ij|) —log(|[Ran]ki]), Vi—

j = k — [} in the vectorgaar, and repeat the same procedure for
all the subblocks iR.

Taking all the non-redundant relations within the diagandl-
blocksRp», Rxx, andRyy, we getatotal ok.; = 331, 0.5i(i—
1) equations, while taking the upper-diagonal subblocks glive
Rpx, Rpy, and Rxy, we geth.o = 3(3M,0.5i(i — 1) +
SM10.5i(i — 1)) equations. In total, we have, = k.1 + ka2
equations, which can be compactly written as

gpp H; 0 0
The data covariance matrR = E {r(t)r”(t)} € C*"*3M gy 0 H, 0] -
can be written as gyy 0 0o H; ¥r d 8
. , e gprx H, Hy, o ||%x|F&8=H ®
R = diag(y)diag(¢) Qdiag(¢")diag(e), @) gpy H, 0 H;| ¥y
) ) gxy 0 H; H;
where(-)* denotes complex conjugation a@i= A (0)RsA” (0)+
Ran. The covariance matric& andR comprises blocks of matrices whereH ¢ R¥:*3M and {L.M = llog(¥rm,1) - .- Iog(wM,M)]T
as for M € {P, X, Y} are each of lengtii/.
R R R Q Q Q The rows ofH; have one of the following forms [13]:
PP PX Py PP PX PY . .
R=1Rep Rax Rayl; Q= |Qup Qua Quyl, . t[e‘lé‘n?ei?s.'.n‘ t(k)l'; rio érg Wehr((?)neZ ; jt ?onrdakzzrfd -Azllzatl?m(’rane
Ryr Ryx Ryy Qvr Qux Qyy In this row are z xcep
andkth positions, respectively.
where 2.[...010...0—10...]wheni # jandj = k. All the

Ry = diag(h o, )diag(é o) Quundiag @y )diag(sh ); - (3)
D

Qv =Y [Re]ygarm(0a)ai(0a) + oil, @
d=1

for M, N € {P, X,)} are each Toeplitz.

In practice, the true covariance matrix is not available amd
have to use a sample covariance matrix, which is evaluated &
finite number of time snapshotd], as

N 1
R=— > r(t)r(t). (5)

t=1

For the sake of brevity, henceforth we simply (Beinstead ofR.
In what follows, we present linear estimators {prand¢ by taking
into account the structure of the covariance matrix.

elements in this row are zero except for a 1 and -1 atttne
andlth positions, respectively.

3.[..010...010...0—-10...0 —10...]whens, j, k
and! are distinct. All the elements in this row are zero ex-
cept for 1, 1, -1 and -1 at thih, jth, kth, andith positions,
respectively.

The rows ofH; andHj3 have one of the following forms:

1. Allthe elements in the rows @& are zero except for a 1 and
-1 at theith andkth positions, respectively, and they will be
of the form[... 010 ...0 —10...].

2. Allthe elements in the rows @3 are zero except fora 1 and
-1 at thejth andlith positions, respectively, and they will be
ofthe form[... 010 ...0 —10...].

It is easy to see that the matrickk, H2, andH3s each have
the all-one vectorl in its nullspace. This means thall has

3M — 3 nonzero singular values with the vectdis” 0" OT]T,
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0" 17" OT}T, [0" 0" 1T]T in its nullspace. Equations corre-
sponding to the cross correlations betwgenX’, and)’ transducers,
do not improve the rank of the system, but the additional gops
generated from the cross blocksRfmight be useful to improve the 2
estimates when only a finite number of snapshots are availabl

As the matrixH is not full column rank, one reference AVS
with known gain is needed to uniquely determine the unknoaingy

1.[..010...0—=20...010...]wheni # j andj = k.
All the elements in this row are zero except fora 1,-2 and 1 at
theith, j(= k)th, and thdth positions, respectively.
.[..010...0—-10...0—-10...010...]whens, j, k
and! are distinct. All the elements in this row are zero ex-
cept for 1, -1, -1, and 1 at thih, jth, kth andith positions,
respectively.

In other words, we can estimate the sensor gang, for M <

{P,X,Y}, up to an arbitrary multiplicative factor. To do so, let us

include the known reference gains to obtain

The matrixG; hasM — 2 nonzero singular values and there
are two M x 1 vectors, namely[11 ... 1]" and [12 ... M]"
in its nullspace. Howeverz has3M — 4 nonzero singular val-

ues with four3M x 1 vectors in its nullspace.

Those include

r H: 0 0 1
grP 0 H, 0 [170707]", [0T1707]", [070717]", and [t7tT¢tT]",
8xx 0 0 H - wheret = [123 ... M]". By exploiting the cross correlations be-
gyy H, H; O Yp . tweenP, X', and) channels, we gain rank, i.e, the rank is increased
gpx | =| H2 0 Hs Py ©g=Hy, (9) to3M —4from3M — 6. This is the main advantage of jointly
gPy 0 H, Hs 1];), performing the phase calibration for all the transduceesym the
gxy e 0 0 AVS array.
0 0 e o To solve (12), wher?, X', and) channels are processed inde-
L O 0 ef | pendently (i.e., without considering the equations relédethe cross

wheree; is the first column of the identity matrix of siz&/ x M.
Here, we pick, without loss of generality, the 1st AVS as tbier-

correlations between the channels), we would require tfeyeace
AVSs. In contrast, by considering enti€e, we need only one refer-
ence AVS and an additional phase reference (it could be amgtr
ence. Then, the sensor gains can be computed using leasésquaducer type), as its rank %)/ — 4. Those known phase references

as N are included as additional equations to obtain
iy 1\ — 1177 ~
Y=(H H) H g "G o 0 -
0 G, 0
4, ESTIMATION OF SENSOR PHASES pPP 0 0 G,
Pxx H, -H; 0 ~
After computing the sensor gains, in order to estimate temenhts Pyy H- 0 —H; ép -
of ¢, we again process each subblockbseparately. From (3), we | PP¥ 0 H, -H, | |Px|©P=GCGo (13
have PPy el 0 0 by
Pxy o 7 0
angle([Ran]ij) = angle([Qmarlij) + dami — dny,  (10) 0 0 0 el
Lel o 0o |

fori,5 = 1,..., M. Here,angle(-) denotes the phase. Using the

fact that each subbloo® . is Toeplitz, we obtain the relation wheree; ande; are, respectively, the first and second columns of

the identity matrix of sizel/ x M. Then, the sensor phases can be
angle([Ran]ij) — angle([Ravwri) = o — o computed using least squares as

— drmk + dar, (11)

—(GTG) G .

<

forall : — 5 = k — 1. We can now collect the measurements

{angle([Ramw]ij) — angle([Ran i), Vi — 7 = k— 1} in avector

pPmw, and repeat the same procedure for all the subblocks.in
Taking all the nonredundant relations within the diagonsd-s

blocks Rpp, Rxx, andRyy, we getk, = 33051 0.5i(i —

1) equations while taking the upper-diagonal subblocks albieg

Rpx, Rpy, andRay, we get a total ofk,2 = 3(3°1, 0.5i(i —

1) + 3 Mo10.5i(i — 1)) equations that are of the form as in (11).

In total, we havek, = k,1 + kp2 equations of the form

5. SIMULATIONS

In this section, we present numerical simulations to ifatst the de-
veloped theory. We consider an array consisting of six AVSs a
ranged in an ULA configuration with an inter-element spaafig
A/2. Further, the first AVS is considered as a reference with its
channels having a nominal gain of 1 and a nominal phase to be 0.
For solving (13), itis considered that the pressure chaoiitéle first

and second AVS as phase reference. We assume five equalegower

prp G 0 0 sources at DOA# = [—35°,68°,79°, —128°,137°]".

Pxx 0 G 0 é The spectral plot of the MVDR and MUSIC algorithm are pre-
pyy| _| O 0 G, (%7: op=Go (12) sented in Figure 1 and 2. Here, we use a signal-to-noiseafidB
Prx H: -Hj3 0 =X P ’ with respect to the source signal and the sample covariamatexm
PPy H, 0 —H|l% R is formed usingV = 1000 snapshots. Further, up todB and
Pxy 0 H, -—H; 20° (root-mean-square values) of random gain and phase uimzerta

whereG € R***™ and¢,, = [¢prm.1 ... dru]’ for M €
{P,Xx,Y} are each of lengtth/.
The rows ofG; have one of the following forms:

ties with respect to the nominal values, are chosen. For \IJSI
without gain and phase uncertainties the peaks in the speeire in
the direction of the actual sources (as indicated by dagfediblack
color line and referred to as Ideal). For MVDR without thergand

3546



phase uncertainties, the peaks in the spectrum are in thetidin of
the actual sources, however, two closely spaced sourdss @nd
79° are not resolved. When the sensors are not calibrated, ib&an
clearly seen that the DOA estimates are poor and the anguéatral
resolution is degraded due to the sensor errors. This gotsdows
that both MVDR and MUSIC are highly sensitive to the senser er
rors. By following the procedure discussed in this work ttneste
the sensor errors, which are then compensated during titreatadn
step, we can clearly see the improved spectral resolutiois. elvi-
dent that the sources located-e85°, —128°, 137° are well resolved
and with less bias using both MUSIC and MVDR. Further, the MU-
SIC algorithm can even resolve the two closely spaced ssuate
68° and79°.

Uncalibrated|
---Ideal

- - Calibrated
— Actual DOAs

Fig. 1. Angular spectrum with, without, and after resolving sen-

sor errors using MUSIC algorithm (here, Ideal refers to tenario
without calibration errors).

Uncalibrated i
---Ideal

- -Calibrated

[ |- Actual DOAS

Fig. 2. Angular spectrum with, without,
errors using MVDR.

2.5

~+-Uncalibrated MUSI(
-B-Uncalibrated MVDR
—+-|deal - MUSIC
-8-|deal - MVDR

—+ Calibrated MUSIC
-3 Calibrated MVDR
ml —CRB

10 20
SNR (dB)
Fig. 3. RMSE variation of the DOA estimate for increasing SNR

using AVS ULA under single source scenario with= 3, § = 60°
andN = 300.

a

N ~+ Uncalibrated - MUSIC
\\ - Uncalibrated - MVDR
\ —+Ideal - MUSIC
- |deal - MVDR
AN —+Calibrated - MUSIC
X o Calibrated - MVDR

10t

10

Time Snapshots

Fig. 4. RMSE variation of the DOA estimate for increasing number
of time snapshotsX) using AVS ULA under single source scenario
with M = 3, 0 = 60° and SNR= 0 dB.

RMSE value is evaluated using 1000 independent trials. dibis
served that as the SNR increases, the RMSE of the DOA essmate
for both MUSIC and MVDR of the calibrated ULA approaches to
the ideal AVS ULA and the CRB. However, the RMSE of DOA es-
timates of the uncalibrated ULA does not improve with the SNR
Finally, in Fig. 4, the RMSE variation of the DOA estimates
using both MUSIC and MVDR for increasing number of snapshots
is shown. Again for evaluating the RMSE values, 1000 MontddCa
experiments were performed. A similar observation as in Fican
be made, where the calibrated array achieves the CRB asithigenu
of snapshots increase. In a nut shell, the DOA estimates thite
proposed calibration are asymptotically (with SNR and/ember

and after resolving senso of snapshots) efficient as they achieve the CRB.

6. CONCLUDING REMARKS

In order to analyze the performance of the proposed blind cal

ibration algorithm, the root mean squared error (RMSE)atam

In this paper, we estimate the sensor errors present in tileUWVA

of the DOA estimates using MUSIC and MVDR are consideredby exploiting the structure in the covariance matrix. Intigatar, we

for a single source scenario through Monte Carlo experisnént
a fixed gain and phase parameters. Firstly, the RMSE vamiatio
the DOA estimates corresponding to the uncalibrated aridrasd
AVS ULA are plotted for different SNRs in Fig. 3. Also, the RES
variation of the AVS ULA without sensor errors and the CraiR@o

derived linear estimators for sensor gains and phases. rbpeged
calibration algorithm does not require a calibrator sousrel be-
ing a blind algorithm, the unknown gains and phases are atton
relative to a reference sensor. To validate the proposetbagip,
simulations performed with MUSIC and MVDR for DOA estima-

lower bound (CRB) are plotted in Fig. 3. For each SNR value, th tion show a significant improvement after calibration.
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