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ABSTRACT

In Doppler-bearing source localization, pseudolinear estimators are
appealing alternatives to the divergence-prone and computationally-
demanding iterative maximum likelihood estimator. Among the ex-
isting pseudolinear estimators, the weighted instrumental variable
estimator (WIVE) is the most attractive option as it is asymptoti-
cally unbiased and efficient. However, the asymptotic unbiasedness
of the WIVE relies on the approximation that the second-order noise
term in the Doppler pseudolinear noise is zero, which is only valid
for sufficiently small noise. In large noise, the second-order noise
term can no longer be neglected, thereby leading to biased estimates.
In this paper, we analyze the WIVE bias and propose a new im-
proved version of the WIVE, called the I-WIVE, that overcomes the
WIVE bias problems at large noise levels. The superior performance
of the I-WIVE over the WIVE and other pseudolinear estimators is
demonstrated by way of simulations. Specifically, we observe that
the I-WIVE exhibits a negligible bias and produces a mean-squared
error closest to the Cramér-Rao lower bound among the simulated
estimators.

Index Terms— Source localization, bearing angle, Doppler
shift, instrumental variables, bias compensation

1. INTRODUCTION

Source localization has been an active research area for several
decades, playing a fundamental role in wide-ranging applications
such as wireless sensor networks, radar and sonar, satellite geoloca-
tion, and search and rescue [1–29]. Source localization makes use of
sensor data and measurements with direct functional dependence on
the source location such as bearing angle, time of arrival, time dif-
ference of arrival, Doppler shift, and received signal strength. In this
paper, we focus our attention on the problem of source localization
in the 2D-plane using bearing angle and Doppler shift measurements
collected by a single moving sensor platform.

Doppler-bearing source localization is a challenging estimation
problem due to the highly nonlinear nature of the bearing angle and
Doppler shift equations with respect to the unknown source loca-
tion to be estimated. The maximum likelihood estimator (MLE)
is a widely-used technique for solving nonlinear estimation prob-
lems [12]. The use of the MLE for Doppler-bearing source localiza-
tion was presented in [13]. In spite of the fact that the MLE enjoys
the desirable properties of asymptotic unbiasedness and efficiency,
it does not admit a closed-form solution and must be implemented
via iterative numerical search algorithms. The high computational
complexity and vulnerability to divergence in the absence of good
initialization makes the MLE less attractive in practice.

An appealing alternative to the MLE is the pseudolinear esti-
mation approach which offers closed-form solutions and thus allevi-
ates the complexity and divergence problems of the MLE. The main

idea behind the pseudolinear estimation approach is to re-arrange
the nonlinear measurement equations so as to make them linear in
the unknowns, followed by linear least-squares estimation. This ap-
proach has been widely used in the literature for various localization
and tracking problems (see e.g., [5–8, 14–28]).

The application of pseudolinear estimation to Doppler-bearing
source localization was proposed in [14]. In particular, the work
in [14] developed three pseudolinear estimators including the pseu-
dolinear least-squares estimator (PLE), the bias-compensated PLE
(BCPLE) and the weighted instrumental variable estimator (WIVE).
The PLE, a simple least-squares solution of the linearized measure-
ment equation system, was realized in [14] to suffer from a severe
bias problem due to the correlation between the measurement matrix
and the pseudolinear noise vector. To overcome the bias problem of
the PLE, the BCPLE aims to estimate and remove the instantaneous
bias of the PLE estimate, while the WIVE exploits the use of instru-
mental variables to eliminate the correlation between the measure-
ment matrix and the pseudolinear noise vector. Among these three
pseudolinear estimators, the WIVE was empirically shown to pro-
vide the best estimation performance [14]. In addition, the WIVE
was also analytically proved in [14] to be asymptotically unbiased
and efficient for sufficiently small measurement noise.

The asymptotic unbiasedness of the WIVE relies on the second-
order noise term in the Doppler pseudolinear noise being negligible
(i.e., the Doppler pseudolinear noise is approximately zero-mean),
which is only valid for sufficiently small noise. In the presence of
large noise, the Doppler pseudolinear noise becomes non-zero mean,
causing a significant bias in the WIVE estimate. The main contribu-
tion of this paper is to analyze the bias of the WIVE and propose a
new improved version of the WIVE, namely the I-WIVE, to resolve
the bias problem of the WIVE in large noise. Specifically, the mean
of the Doppler pseudolinear noise is estimated and used to calculate
the WIVE bias which is subsequently subtracted from the WIVE
estimate. The effectiveness of the proposed I-WIVE in removing
the bias of the WIVE in large noise conditions is demonstrated via
numerical Monte Carlo simulations. The I-WIVE is observed to sig-
nificantly outperform the PLE, BCPLE and WIVE not only in terms
of estimation bias but also in terms of mean-squared error.

2. PROBLEM FORMULATION

Fig. 1 depicts the problem of 2D source localization using bear-
ing angle and Doppler frequency shift measurements collected by
a moving sensor platform, where p = [px, py]

T is the unknown
source position to be estimated, and rk = [rx,k, ry,k]

T and vk =
[vx,k, vy,k]

T are the sensor position and velocity at time instant k ∈
1, . . . , N . Here the symbol T denotes the matrix transpose operator.
The bearing angle and Doppler shift measurements obtained by the
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Fig. 1. Doppler-bearing source localization geometry.

sensor at time instant k are given by

θ̃k = θk + nθ,k, θk = tan−1 py − ry,k
px − rx,k

(1)

ζ̃k = ζk + nζ,k, ζk =
(rk − p)Tvk
‖rk − p‖

(2)

where tan−1 is the 4-quadrant arctangent, ‖·‖ denotes the Euclidean
norm, and nθ,k and nζ,k are measurement noise terms which are
assumed to be zero-mean independent Gaussian random variables
with variance E{n2

θ,k} = σ2
θ,k and E{n2

ζ,k} = σ2
ζ,k. Note that the

Doppler-shift ζk are already normalized by the factor f◦/c, where f◦
is the emitted signal frequency, which is assumed to be known a pri-
ori, and c is the speed of signal propagation. In practice, the emitted
signal frequency f◦ is available in active sensors, e.g., sonar or air-
borne radar systems, or can be estimated by passive sensors, such as
unmanned underwater vehicles or rotary-wing unmanned aerial ve-
hicles, during the loiter mode (in which the sensor position remains
unchanged). In this paper, the sensor position and velocity, pk and
vk, are assumed to be known with negligible error.

3. OVERVIEW OF PSEUDOLINEAR ESTIMATORS

After some algebraic manipulations, the bearing angle and Doppler
shift measurement equations in (1) and (2) can be rearranged into a
pseudolinear form as [14]

Aθ,kp = bθ,k + ηθ,k (3)
Aζ,kp = bζ,k + ηζ,k (4)

where

Aθ,k = [sin θ̃k,− cos θ̃k] (5a)

bθ,k = [sin θ̃k,− cos θ̃k]rk (5b)
ηθ,k = ‖p− rk‖ sinnθ,k (5c)

Aζ,k = ζ̃ku
T
1 + (sin θ̃k + cos θ̃k)v

T
k (5d)

bζ,k = ζ̃ku
T
1 rk + (sin θ̃k + cos θ̃k)v

T
k rk (5e)

ηζ,k = vTk (p− rk)
(
(cos θk − sin θk) sinnθ,k

− 2(sin θk + cos θk) sin
2(nθ,k/2)

)
+ uT1 (p− rk)nζ,k

(5f)

with u1 = [1, 1]T .
By stacking (3) and (4) for k = 1, . . . , N , we obtain

Ap = b+ η (6)

where

A = [AT
1 ,A

T
2 , . . . ,A

T
N ]T , Ak = [AT

θ,k,A
T
ζ,k]

T , (7a)

b = [bT1 , b
T
2 , . . . , b

T
N ]T , bk = [bθ,k, bζ,k]

T , (7b)

η = [ηT1 ,η
T
2 , . . . ,η

T
N ]T , ηk = [ηθ,k, ηζ,k]

T . (7c)

The PLE estimate of p is obtained by solving (6) in the least-
squares sense [14]

p̂PLE = argmin
p∈R2

‖Ap− b‖2 = (ATA)−1AT b. (8)

The estimation bias of p̂PLE is given by

δPLE = E{p̂PLE} − p = −E{(ATA)−1ATη}. (9)

It has been proved in [14] that E{ATη/N} 6= 0 even for N → ∞
because of the correlation betweenA and η, and thus

δPLE → −E
{
ATA

N

}−1

E

{
ATη

N

}
6= 0 as N →∞ (10)

which implies that the PLE has an asymptotically nonvanishing bias.
To moderate the bias problem of the PLE, the BCPLE was de-

veloped in [14] based on an estimation of the instantaneous bias
δins = −(ATA)−1ATη, i.e.,

δ̂ins = −(ATA)−1Ê{ATη} (11)

with Ê
{
ATη

}
=
∑N
k=1 Ê

{
AT
θ,kηθ,k

}
+
∑N
k=1 Ê

{
AT
ζ,kηζ,k

}
.

The expressions for Ê
{
AT
θ,kηθ,k

}
and

∑N
k=1 Ê

{
AT
ζ,kηζ,k

}
are

given in (12) (at the top of next page), where θ̂k and ζ̂k are computed
from p̂ with p̂ = p̂PLE . The BCPLE is obtained by subtracting (11)
from (8) as

p̂BCPLE = p̂PLE − δ̂ins = p̂PLE + (ATA)−1Ê{ATη}. (13)

Since the BCPLE still suffers from bias (although less so than
the PLE for small noise) due to the error existing in the bias esti-
mate δ̂ins, a more attractive solution for the bias problem of the PLE
is to exploit the use of instrumental variables to eliminate the corre-
lation between A and η, thus resulting in the WIVE [14]. Specif-
ically, the PLE normal equations ATAp̂PLE = AT b are modified
to GTAp̂IVE = GT b, where G is the instrumental variable (IV)
matrix and is constructed so that E{GTA/N} is nonsingular and
E{GTη/N} = 0 as N →∞. Thus, the resulting IV estimator is
given by

p̂IVE = (GTA)−1GT b. (14)

Introducing a weighting matrixW = E{ηηT } leads to the WIVE:

p̂WIVE = (GTW−1A)−1GTW−1b. (15)

The optimal choice for G is the noise-free version of A, denoted
as A◦. Unfortunately, A◦ is a function of the unknown bearing an-
gle θk and Doppler shift ζk, and thus is not available. A suboptimal
IV matrix can be constructed based on an estimate of A◦ obtained
using θ̂k and ζ̂k calculated from the BCPLE estimate p̂BCPLE :

G = [GT
1 ,G

T
2 , . . . ,G

T
N ]T , Gk = [GT

θ,k,G
T
ζ,k]

T , (16)

where

Gθ,k = [sin θ̂k,− cos θ̂k] (17a)

Gζ,k = ζ̂ku
T
1 + (sin θ̂k + cos θ̂k)v

T
k . (17b)
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N∑
k=1

Ê
{
AT
θ,kηθ,k

}
=

N∑
k=1

E{sin2 nθ,k}(p̂− rk) (12a)

N∑
k=1

Ê
{
AT
ζ,kηζ,k

}
=

N∑
k=1

E{n2
ζ,k}uT1 (p̂− rk)u1 − 2

N∑
k=1

ζ̂k(sin θ̂k + cos θ̂k)E
{
sin2

(nθ,k
2

)}
vTk (p̂− rk)u1

+

N∑
k=1

{(
−2(sin θ̂k + cos θ̂k)

2
(
E
{
sin2

(nθ,k
2

)}
−2E

{
sin4

(nθ,k
2

)})
+(cos θ̂k − sin θ̂k)

2E{sin2 nθ,k}
)
vTk (p̂− rk)vk

}
. (12b)

The expression for the weighting matrixW is

W = E{ηηT } = diag(E{η1η
T
1 }, E{η2η

T
2 }, . . . , E{ηNηTN})

(18)
where

E{ηkηTk } =
[

E{η2θ,k} E{ηθ,kηζ,k}
E{ηζ,kηθ,k} E{η2ζ,k}

]
(19)

and

E{η2θ,k} = ‖p− rk‖2E{sin2 nθ,k} (20a)
E{ηθ,kηζ,k} = E{ηζ,kηθ,k}

= ‖p− rk‖vTk (p− rk)(cos θk − sin θk)E{sin2 nθ,k} (20b)

E{η2ζ,k} =
(
uT1 (p− rk)

)2
E{n2

ζ,k}

+
(
vTk (p− rk)

)2(
4(sin θk + cos θk)

2E
{
sin4 (nθ,k/2)

}
+ (cos θk − sin θk)

2E{sin2 nθ,k}
)
. (20c)

Note that, since the knowledge of p, θk and ζk is not available,
p̂BCPLE as well as θ̂k and ζ̂k calculated from p̂BCPLE are used in-
stead to approximateW .

4. BIAS ANALYSIS

The bias of the WIVE is given by

δWIVE = E{p̂WIVE − p} = −E{(G
TW−1A)−1GTW−1η}.

(21)
By following the derivation in [14] based on the probability theory,
it is straightforward to show that

δWIVE → −E
{
GTW−1A

N

}−1

E

{
GTW−1η

N

}
as N →∞.

(22)
Since the covariance of p̂BCPLE tends to zero asN →∞, the corre-
lation between p̂BCPLE and η vanishes as N → ∞. Consequently,
given thatG is constructed based on p̂BCPLE , we have

E

{
GTW−1η

N

}
→ E {G}T W−1E{η}

N
as N →∞, (23)

and thus

δWIVE → −E
{
GTW−1A

N

}−1
E {G}T W−1E{η}

N

as N →∞.
(24)

For sufficiently small measurement noise, the second-order
noise term sin2(nθ,k/2) in ηζ,k (see (5f)) is approximately zero and

thus E{η} ≈ 0. As a result, we have δWIVE → 0 as N → ∞,
which implies the asymptotic unbiasedness of the WIVE under the
small noise assumption in agreement with [14].

In contrast, in large noise conditions, the second-order noise
term sin2(nθ,k/2) becomes significant and the zero-mean approx-
imation of the pseudolinear noise η is no longer valid. Instead, we
have E{η} 6= 0. Specifically, the expression of E{η} is given by

E{η} = [E{η1}T , E{η2}T , . . . , E{ηN}T ]T (25)

where

E{ηk} = [E{ηθ,k}, E{ηζ,k}]T (26a)
E{ηθ,k} = 0 (26b)

E{ηζ,k} = −2vTk (p− rk)(sin θk + cos θk)E{sin2(nθ,k/2)}.
(26c)

Since E{η} 6= 0, we have

δWIVE → −E
{
GTW−1A

N

}−1
E {G}T W−1E{η}

N
6= 0

as N →∞.
(27)

which implies an asymptotically nonvanishing bias for the WIVE
under heavy noise.

5. PROPOSED ESTIMATOR

In this section, we propose a new variant of the WIVE, the I-WIVE,
to overcome the bias problems of the WIVE in the case of large
measurement noise.

Using (27), for sufficiently large N , the bias of the WIVE can
be approximated by

δWIVE ≈ −E
{
GTW−1A

N

}−1
E {G}T W−1E{η}

N
(28a)

≈ −(GTW−1A)−1GTW−1E{η}. (28b)

Since E{η} is a function of the unknowns p and θk, an estimate
of the approximate bias δWIVE in (28) can be obtained by replacing
E{η} with Ê{η}

δ̂WIVE = −(GTW−1A)−1GTW−1Ê{η} (29)

where Ê{η} has the same expression as E{η} in (25) and (26), ex-
cept that p is replaced by p̂BCPLE and θk is replaced by θ̂k calculated
from p̂BCPLE .
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Fig. 2. Bias norm and RMSE versus noise standard derivation in Table 1 for the proposed I-WIVE in comparison with the existing PLE,
BCPLE and WIVE.

The I-WIVE is now obtained by subtracting the bias esti-
mate δ̂WIVE from the WIVE estimate p̂WIVE :

p̂I-WIVE = p̂WIVE − δ̂WIVE (30a)

= (GTW−1A)−1GTW−1(b+ Ê{η}). (30b)

Note thatG,W and Ê{η} in (30) are computed using the BCPLE
estimate p̂BCPLE .

6. SIMULATION STUDIES

We consider a simulated Doppler-bearing source localization geom-
etry with a source located at p = [70, 60]T m and a sensor traveling
in a straight line ry,k = −0.2 rx,k + 10 with a constant velocity
of vk = [−10, 2]T m/s. The sensor collects N = 100 bearing angle
and Doppler shift measurements at equally spaced points along the
segment 5 ≤ rx,k ≤ 35. We consider a large noise scenario with
measurement noise standard deviations listed in Table 1.

The bias norm and root mean-squared error (RMSE) measures
are used for performance comparison. The bias norm is defined by
‖E{p̂} − p‖ while the RMSE is defined by (trE{(p̂ − p)(p̂ −
p)T })1/2, where p̂ is an estimate of p. The bias and RMSE perfor-
mance is estimated using 10,000 Monte Carlo simulation runs. In
addition, the square root of the trace of the CRLB (referred to as
RCRLB for simplicity) is also computed as the theoretical bench-
mark for the RMSE performance. The expression for the CRLB is

CRLB = (JTK−1J)−1 (31)

where K = diag(K1,K2, . . . ,KN ) is the noise covariance with
Kk = diag(σ2

θ,k, σ
2
ζ,k), and J = [JT1 ,J

T
2 , . . . ,J

T
N ]T is the Ja-

cobian matrix evaluated at the true source position p with Jk =
[JTθ,k,J

T
ζ,k]

T . Here,

Jζ,k =

[−vx,k sin2 θk +
1
2
vy,k sin 2θk,−vy,k cos2 θk + 1

2
vx,k sin 2θk]

‖p− rk‖
(32)

Table 1. Measurement noise standard deviation
Index 1 2 3 4 5 6 7 8 9 10
σθ (deg.) 6 8 10 12 14 16 18 20 22 24
σζ (m/s) 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

and Jθ,k = [− sin θk,cos θk]
‖p−rk‖

. In this simulation, we use the following
approximations: E{sin2 nθ,k} = σ2

θ,k − σ4
θ,k, E{sin2(nθ,k/2)} =

σ2
θ,k/4− σ4

θ,k/16, and E{sin4(nθ,k/2)} = 3σ4
θ,k/16.

Fig. 2 shows the performance of the proposed I-WIVE and the
existing algorithms (the PLE, BCPLE and WIVE) against the mea-
surement noise in Table 1. The PLE exhibits a severe bias as ex-
pected. The bias problem of the PLE is greatly moderated by the
BCPLE and is even further reduced by the WIVE. However, in such
a large noise scenario, the bias of the WIVE is still noticeably large.
This observation agrees with the analytical findings presented in Sec-
tion 4 that the WIVE is asymptotically biased under large noise due
to the second-order noise term in the Doppler pseudolinear noise
not being negligible. In contrast, by estimating and subtracting the
WIVE bias from the WIVE estimate, the proposed I-WIVE produces
a very small bias compared with that of the WIVE.

It is also observed in Fig. 2 that, although the WIVE exhibits
the best RMSE performance among the existing pseudolinear esti-
mators, its RMSE significantly deviates from the RCRLB as noise
increases because of its bias problem. On the other hand, the RMSE
of the proposed I-WIVE is appreciably smaller and much closer to
the RCRLB than that of the WIVE thanks to the compensation of
the WIVE bias in the I-WIVE. This observation demonstrates the
superior performance of the I-WIVE over the existing pseudolin-
ear estimators not only in terms of the estimation bias but also the
RMSE.

7. CONCLUSION

The WIVE presented in [14] for single-platform Doppler-bearing
source localization suffers from significant bias problems in the pres-
ence of heavy measurement noise due to the second-order noise term
in the Doppler pseudolinear noise which can no longer be neglected.
In this paper, we have analysed the asymptotic bias of the WIVE
and proposed a new refinement of the WIVE, namely the I-WIVE, to
compensate the bias of the WIVE in large noise conditions. Specif-
ically, the I-WIVE incorporates the BCPLE to estimate the WIVE
bias and removes it from the WIVE estimate. The performance ad-
vantages of the I-WIVE over the existing pseudolinear estimators
under heavy noise were demonstrated by way of Monte Carlo sim-
ulations. The I-WIVE was observed to significantly outperform the
PLE, BCPLE and WIVE, exhibiting a negligible bias and producing
an RMSE closest to the RCRLB.
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