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ABSTRACT

The most state-of-art time-difference-of-arrival (TDOA) lo-
calization algorithms are performed under the assumption that
all the nodes are synchronized. However, for a widely dis-
tributed wireless sensor networks (WSNs), time synchroniza-
tion between all the nodes is not a trival problem. In this pa-
per, we study the problem of source localization using signal
TDOA measurements in the system of nodes part synchro-
nization. Starting from the maximum likelihood estimator
(MLE), we develop a semidefinite programming (SDP) ap-
proach. Besides, we extend the SDP algorithm to the case of
non-accurate sensor position. Simulation results validate the
localization performance of the proposed SDP algorithms.

Index Terms— Source localization, time-difference-of-
arrival (TDOA), synchronization, semidefinite programming
(SDP)

1. INTRODUCTION

Localization of an emitting source using multiple sensor
nodes has many important applications, including wireless
sensor networks (WSNs) [1], [2], wireless communication
[3] and intelligent transport [4]. Some typical measurement
techniques are used in the source localization, including
direction-of-arrival (DOA), time-of-arrival (TOA), time-
difference-of-arrival (TDOA) and received signal strength
(RSS).

There has a lot of research concentrated on the estima-
tion of source location based on TDOA measurements [5],
[6], [7], [8]. It is known that the maximum likelihood esti-
mator (MLE) is asymptotically efficient, but MLE is not easy
to achieve in practice. Because it has to be realized by nu-
merical iterative computation that requires sufficiently pre-
cise initial estimate for the global solution. Consequently,
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many researchers have been working on closed-form alge-
braic solution that can avoid the initialization problem which
occurs in MLE. Nevertheless, the closed-form solution needs
to square the nonlinear measurement equations, which result
in the closed-form solution is only valid at sufficiently small
noise conditions [5].

Due to the MLE has the optimal estimation performance,
some semidefinite programming (SDP) based localization al-
gorithms are proposed to directly relax the nonconvex MLE
problem into convex problem [9], [10]. In [9], the authors use
additional constraints, i.e., admissible physical region of the
source, to improve the SDP algorithm performance. It shows
that the SDP algorithm can attain Cramér-Rao lower bound
(CRLB) at middle level noise, but it can not reach the CRLB
at small level noise. Besides, the admissible source position
information may not be available in some practical applica-
tions. In [10], Yang et al. develop an SDP algorithm with
penalty term in the objective function, but the SDP algorithm
without further local optimization can not reach the CRLB.

The above TDOA source localizaion algorithms are de-
veloped under the assumption that all the nodes (including
reference node and the measurement nodes) are entirely syn-
chronized. However, synchronization between reference node
and the measurement nodes is not a trivial problem [11], [12]
for a widely distributed WSN.

In this paper, we consider the problem of nodes partly syn-
chronous TDOA source localization. We formulate an SDP
algorithm for the problem, and then we consider the more
complicated case: TDOA source localization in nodes partly
synchronous system with the prensence of sensor position er-
rors.

The rest of this paper is organized as follows. In Section
II, the nodes partly synchronous TDOA measurements model
is described, and the MLE problem is formulated. In Section
III, we use SDP technique to relax the nonconvex MLE prob-
lem into convex problem. In Section IV, we propose a robust
SDP localization algorithm for non-accurate sensor position.
Simulation results are given in Section V to demonstrate the
location estimation performance of the proposed estimators.
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In Section VI, we give conclusions.

2. PROBLEM STATEMENT

The following notations are used throughout this paper. Bold
uppercase and bold lowercase letters denote matrices and vec-
tors, respectively. Im is the m×m identity matrix, 1m is the
vector of m ones. ‖·‖ is the l2 norm, and tr(·) is the trace
operator. xi is the ith element in vector x, and Ai,j is the ith
row and jth column element in matrix A. A � B means that
A−B is positive semidefinite.

We consider a nodes partly synchronous TDOA source
localization system, which has N clusters, and each cluster
has Mn sensors, where n = 1, 2, . . . , N . The total number
of sensors is

∑N
n=1Mn = f . Let sni ∈ Rm and u ∈ Rm

be the known position of ith sensor in nth cluster and the
unknown source position, respectively, where m is equal to
2 or 3. f ≥ max(N + m, 2N) is a required condition for a
feasible localization system. In Fig. 1, we illustrate a nodes
partly synchronous TDOA source localization system, which
has 3 clusters. Let dni = ‖u− sni ‖ be the unknown distance
between sensor sni and source u.
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Fig. 1. Illustration of nodes partly synchronous TDOA source
localization system, where the nodes connected by lines
means they are synchronized.

In nth cluster, without loss of generality, let sn1 be the
reference node, and then the TDOA measurements can be de-
noted as

rni1 = dni − dn1 + eni1, n = 1, 2, . . . , N, i = 2, 3, . . . ,Mn.
(1)

where rni1 is equal to the ith TDOA measurement tni1 multiply-
ing by the signal propagation speed c, and eni1 is the distance
difference measurement noise at ith node. For ease of anal-
ysis, we assume that en = [en21, e

n
31, . . . , e

n
Mn1

]T is a zero-
mean Gaussian vector with known covariance matrix Qn [5].

Then the MLE can be written as the following optimiza-
tion problem:

min
u

N∑
n=1

Mn∑
i=2

Mn∑
j=2

(
rni1 − ‖u− sni ‖+ ‖u− sn1‖

)
[Q−1

n ](i−1),(j−1)·

(
rnj1 −

∥∥u− snj
∥∥+ ‖u− sn1‖

)
(2)

The above problem is nonlinear and nonconvex, consequently
the MLE is hard to achieve. Next, we will show how a non-
convex MLE problem be relaxed to a convex problem.

3. LOCALIZATION ALGORITHM

For easy of analysis, (2) can be written as the matrix-vector
form

min
u,dn

N∑
n=1

(rnd −And
n)TQ−1

n (rnd −And
n) (3a)

s.t. dni = ‖u− sni ‖ , n = 1, 2, . . . , N, i = 1, 2, . . . ,Mn.
(3b)

where rnd = [rn21, r
n
31, . . . , r

n
Mn1

]T , dn = [dn1 , d
n
2 , . . . , d

n
Mn

]T ,
An = [−1Mn−1, IMn−1]. It can be seen that the objective
function in (3a) is convex for dn. However, the constraints in
(3b) are nonconvex for dn and u.

The objective function in (3a) can be rewritten as

N∑
n=1

(
tr(DnAT

nQ
−1
n An)− 2rnd

TQ−1
n And

n + rnd
TQ−1

n rnd
)

(4)
where Dn = dndnT .

The constraints in (3b) can be expressed as

Dn
i,i = ‖u− sni ‖

2
= ys−2uT sni +sni

T sni , i = 1, 2, . . . ,Mn.
(5)

where ys = uTu.
Using the Cauchy-Schwartz inequality [13], we can ob-

tain

Dn
i,j ≥ |ys−uT (sni +snj )+sni

T snj |, 1 ≤ i < j ≤Mn. (6)

Note that AT
nQ

−1
n An in (4) is singular, i.e., it is not a full

rank matrix. To improve the accuracy, as in [14], we also in-
troduce a penalty term

∑N
n=1 tr(D

n) into the objective func-
tion and add the second-order-cone (SOC) constraints

‖u− sni ‖ ≤ dni , n = 1, 2, . . . , N, i = 1, 2, . . . ,Mn. (7)

By using the semidefinite relaxation (SDR) method [15],
we can relax (3) into the following convex problem

min
dn,Dn,u,ys

N∑
n=1

(
tr(DnAT

nQ
−1
n An)− 2rnd

TQ−1
n And

n + ηtr(Dn)
)

(8a)

s.t. Dn
i,i = ys − 2uT sni + sni

T sni ,

n = 1, 2, . . . , N, i = 1, 2, . . . ,Mn. (8b)
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‖u− sni ‖ ≤ dni , n = 1, 2, . . . , N, i = 1, 2, . . . ,Mn.
(8c)

Dn
i,j ≥ |ys − uT (sni + snj ) + sni

T snj |,
n = 1, 2, . . . , N, 1 ≤ i < j ≤Mn. (8d)[

1 dnT

dn Dn

]
� 0, n = 1, 2, . . . , N, (8e)[

Im u
uT ys

]
� 0. (8f)

where η is the regularization parameter which is difficult to
determine. To alleviate this problem, first, we need to choose
K different η, {ηk}Kk=1, and then solve (8) with the K dif-
ferent choice of η, {ηk}Kk=1, finally, from the K estimates
{ûk}Kk=1 to select û that gives the minimum cost function Jk

Jk =
N∑

n=1

(rnd−And̂
n
k )TQ−1

n (rnd−And̂
n
k ), k = 1, 2, . . . ,K.

(9)
where d̂n

k = [d̂nk1, d̂
n
k2, . . . , d̂

n
kMn

]T , and d̂nki = ‖ûk − sni ‖ , n =
1, 2, . . . , N, i = 1, 2, . . . ,Mn.

The method of determining a fitness penalty parameter is
heuristic, and we need to solve K times of SDP problems to
get a refined solution, which greatly increase the computa-
tional complexity. Nevertheless, we can solve the K times of
SDP problems in parallel.

4. ROBUST LOCALIZATION ALGORITHM

In the previous discussion, the sensor positions are accurate.
However, in practical, there exist the sensor position errors
[16]. The obtained but erroneous sensor position can be ex-
pressed as

bn
i = sni + βn

i (10)

where βn
i is the sensor position error, which is modeled as

Gaussian white noise with covariance matrix δni
2Im [17].

Under the condition of independent noises βn
i and eni1, the

MLE problem can be written as

min
u,sni

N∑
n=1

Mn∑
i=2

Mn∑
j=2

(
rni1 − ‖u− sni ‖+ ‖u− sn1‖

)
[Q−1

n ](i−1),(j−1)·

(
rnj1 −

∥∥u− snj
∥∥+ ‖u− sn1‖

)
+

N∑
n=1

Mn∑
i=1

‖bn
i − sni ‖

2

δni
2

(11)

The above formulation can be reshaped as (constant terms are
discarded)

min
X,dn

N∑
n=1

(rnd −And
n)TQ−1

n (rnd −And
n)+

∥∥∥(X(:, 2 : f + 1)−B)W
1
2

∥∥∥2
F

(12a)

s.t. dni =

∥∥∥∥∥X(:, 1)−X(:, 1 + i+

n−1∑
q=0

Mq)

∥∥∥∥∥ ,
n = 1, 2, . . . , N, i = 1, 2, . . . ,Mn. (12b)

where M0 = 0, and

X = [u, s11, . . . , s
1
M1
, . . . , sN1 , . . . , s

N
MN

], (13)

B = [b1
1, . . . ,b

1
M1
, . . . ,bN

1 , . . . ,b
N
MN

], (14)

W = diag
(
[δ11

−2
, . . . , δ1M1

−2
, . . . , δN1

−2
, . . . , δNMN

−2
]
)
.

(15)

Let Y = XTX, the above objective function can be recast as

N∑
n=1

(
tr(DnAT

nQ
−1
n An)− 2rnd

TQ−1
n And

n
)
+

tr
(
WY(2 : f + 1, 2 : f + 1)

)
− 2tr

(
WX(:, 2 : f + 1)TB

)
(16)

Similar to the deviation of (8), we give the robust SDP local-
ization algorithm

min
dn,Dn,X,Y

N∑
n=1

(
tr(DnAT

nQ
−1
n An)− 2rnd

TQ−1
n And

n+

ηtr(Dn)
)

+ tr
(
WY(2 : f + 1, 2 : f + 1)

)
−

2tr
(
WX(:, 2 : f + 1)TB

)
(17a)

s.t. Dn
i,i = Y (1, 1)− 2Y (1, 1 + i+

n−1∑
q=0

Mq)+

Y (1 + i+

n−1∑
q=0

Mq, 1 + i+

n−1∑
q=0

Mq),

n = 1, 2, . . . , N, i = 1, 2, . . . ,Mn. (17b)∥∥∥∥∥X(:, 1)−X(:, 1 + i+

n−1∑
q=0

Mq)

∥∥∥∥∥ ≤ dni ,
n = 1, 2, . . . , N, i = 1, 2, . . . ,Mn. (17c)

Dn
i,j ≥ |Y (1, 1)− Y (1, 1 + i+

n−1∑
q=0

Mq)−

Y (1, 1 + j +

n−1∑
q=0

Mq)+

Y (1 + i+

n−1∑
q=0

Mq, 1 + j +

n−1∑
q=0

Mq)|,

n = 1, 2, . . . , N, 1 ≤ i < j ≤Mn. (17d)[
1 dnT

dn Dn

]
� 0, n = 1, 2, . . . , N, (17e)[

Im X
XT Y

]
� 0. (17f)
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Table 1. Sensor positions in the unit of meters,N = 4,M1 =
2,M2 = 2,M3 = 2,M4 = 2, f = 8

Sensor no. x y Ref.
1 0 0 Yes
2 10 0 No
3 90 0 Yes
4 100 0 No
5 0 90 Yes
6 0 100 No
7 90 90 Yes
8 90 100 No

The K times computation of (17) is similar to (8), and the
selection of û is also from (9).

5. SIMULATION RESULTS

In this section, we conduct several numerical simulations to
demonstrate the performance of the proposed SDP algorithm.
The proposed SDP algorithm is implemented by CVX tool-
box [18], using SeDuMi as a solver [19], and the precision is
set to best.

500 Monte Carlo realizations were done in the following
simulations. The TDOA measurement noise covariance ma-
trices is Qn = σ2R, where the diagonal elements in R equals
to 1 and all other elements equals to 0.5 [16]. The sensor po-
sition errors variance is δni

2 = δ2.
We consider the 2-D localization case. There are four

clusters TDOA measurements, i.e., N = 4. The positions
of the sensor nodes are listed in Table 1. Sensor 1 to sensor
2 are belong to cluster one, sensor 3 to sensor 4 are belong to
cluster two, sensor 5 to sensor 6 are belong to cluster three,
and sensor 7 to sensor 8 are belong to cluster four. In Table
1, ’Yes’ means reference node. We set K = 5, η1 = 10−4,
η2 = 10−3, η3 = 10−2, η4 = 10−1, η5 = 100 for the compu-
tation of (8) and (17).

In Fig. 2, we show the estimation performance of the pro-
posed algorithm. The 2SWLS and SDP-TDOA algorithms
can not be applied in this case. However, from Fig. 2, it can
been seen that the proposed algorithm performs well, and it
is very close to the CRLB. Besides, we can see that the per-
formance gap between partly synchronous and entirely syn-
chronous is 13 dBm.

In Fig. 3, we show the estimation performance of the pro-
posed robust algorithm in the presence of sensor position er-
rors. From the figure, we can see that the proposed algorithm
still perform well when consider the sensor position errors.

6. CONCLUSIONS

In this paper, we have investigated the problem of TDOA
source localization in nodes partly synchronous system. First,
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we consider the situation of accurate sensor position, and we
formulated the MLE problem, then we use the SDP tech-
niques to relax the nonconvex MLE problem into convex
problem. Besides, we develop a robust SDP algorithm for the
case of non-accurate sensor position. The simulation results
demonstrated that the proposed algorithms have good perfor-
mance under the condition of accurate or non-accurate sensor
position.
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