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ABSTRACT 

 

This paper considers the target localization problem using 

the hybrid bistatic range and time difference of arrival 

(TDOA) measurements in multistatic radar. An algebraic 

closed-form solution to this nonlinear estimation problem is 

developed through two-stage processing, where the nuisance 

variables are introduced in the first stage and the localization 

error of first stage solution is estimated to improve the final 

target position estimate in the second stage. Theoretical 

analysis shows that the performance of the proposed method 

can reach the Cramer-Rao lower bound (CRLB) for 

Gaussian measurement noise over the small error region. 

Simulations are included to corroborate the performance of 

the proposed estimator. 

 

Index Terms— Cramer-Rao lower bound (CRLB), 

bistatic range, time difference of arrival (TDOA), target 

localization, multistatic radar 

 

1. INTRODUCTION 

 

Target localization is a fundamental problem in multistatic 

radar systems, which has drawn considerable attentions in 

recent years [1-4]. Multistatic radar consists of multiple 

transmitter–receiver pairs, each of which can determine one 

bistatic range (BR) measurement. Each BR induces an 

ellipsoid where the target lies on, with the associated 

transmitter and receiver as its foci. Another common 

technique is to measure the time differences of arrival 

(TDOA) measurement of the source reflecting signal 

between the reference receiver and another receiver. Each 

TDOA defines a hyperboloid in which the source must lie. 

The intersection of these conicoid gives the target location 

estimate. 

The source localization problem is potentially 

challenging due to the highly nonlinear relationship between 

the measurements and the unknown parameters. A lot of 

hyperbolic localization methods [5-11] have been developed 

using TDOA measurements over the last few decades. 

Recently, there is a rapidly growing literature concerned 

with the BR-based localization [12-17], which can be 

divided into iterative and closed-form algorithms. The 

closed-form solutions [13-17] are computationally attractive 

without requiring initial guesses and having divergence 

problem as compared to the iterative techniques [12]. In [13], 

elliptic equations were converted to hyperbolic ones, from 

which the target location was obtained using the least 

squares approach. The work [3, 18] conducted a preliminary 

study on the comparison between elliptic and hyperbolic 

positionings. Especially in [19], Rui and Ho performed a 

further investigation on the performance of elliptic 

localization with respect to the hyperbolic localization 

through CRLB analysis. More recently, the work by Liu [20] 

considered the problem of moving target localization using 

both BR and Doppler shift measurements and identified 

jointly the target position and velocity. Furthermore, [15] 

and [21] presented a hybrid BR and bearing measurements 

location algorithm that gives better accuracy than using BR 

alone. We shall consider in this paper the problem of target 

localization using both BR and TDOA measurements from 

multistatic radar. 

This paper develops an efficient closed-form method for 

target localization in multistatic radar using the hybrid BR 

and TDOA measurements. The proposed estimator is based 

on two-stage processing [10]. In the first stage, a set of 

pseudolinear BR and TDOA equations are established by 

introducing nuisance parameters. In the second stage, the 

error term of the first stage solution is estimated using the 

relationship between the unknowns and nuisance variables. 

The obtained estimator gives a global minimum solution and 

is shown analytically and confirmed by simulations to be 

able to attain the CRLB performance under samll Gaussian 

measurement noise conditions. 

The rest of this paper is organized as follows. Section 2 

presents the target localization problem and the CRLB is 

derived in Section 3. The closed-form solution is proposed 

in Section 4. Section 5 provides the theoretical analysis and 

Section 6 examines the performance by simulations. Section 

7 is the conclusion. 

 

2. PRELIMINARY 

 

We shall consider the target localization problem in three-

dimensional (3D) space using M  transmitters and N  

receivers, whose positions are denoted by , ,
T

t t t
i i i ix y z 

 
t , 
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1,2, ,i M  and , ,
T

s s s
j j j jx y z 

 
s , 1,2, ,j N , where 

superscript T  stands for the transpose. The true position of 

the target is represented by  , ,
T

x y zu . 

Each transmitter radiates a signal, and all receivers 

observe the signal from direct propagation and from indirect 

reflection of the target. The range between a transmitter-

receiver pair is known as BR. The reflecting signal can be 

observed by all receivers to produce multiple TDOAs. 

The range difference o
ijr  between the direct and the 

indirect signal from transmitter i  at receiver j  is given by 


o t s

ij i j ijr r r d    

where 
t

i ir  u t , s
j jr  u s , ij i jd  t s , and   

represents the Euclidean norm. It is obvious that BR is 

obtained through o
ijr  plus the range ijd . We shall use BR 

and range difference interchangeably in this paper. 

The noisy version of o
ijr  can be written by +o

ij ij ijr r r  , 

where ijr  is the additive noise. Collecting the MN  range 

measurements gives 

 1 2, , ,
T

T T T o
N

    
 

r r r r r r  

where 1 2, , ,
T o

j j j Mj j jr r r    r r r  contains the range 

difference measurements from the receiver j . 

Without loss of generality, let us choose receiver 1s  as 

the reference sensor. After multiplying TDOA by signal 

propagation speed, the range difference of arrival (RDOA) 

1
o
jr  can be expressed as 

 1 1
o s s
j jr r r   

where 2,3, ,j N . TDOA and RDOA will be 

interchangeably used in this paper. The noisy RDOA 

measurement is modeled as 1 1 1+o
j j jr r r  , where 1jr  is the 

additive noise. We can define the 1N   RDOA 

measurements in vector form as 

  21 31 1, , ,
T o

Nr r r   r r r  

where o
r  is the actual counterpart and r  is the 

corresponding error vector. 

For notation simplicity, we stack r , r  and represent 

them together by ,
T

T T o    
 

m r r m m . To simplify 

the development, we assume r  and r  are independent 

of each other. The error vector m  is assumed to be zero-

mean Gaussian with a prior known covariance matrix 

diag( , )m r rQ Q Q , where rQ  and rQ  are covariance 

matrices of r  and r , respectively. 

We would like to accurately estimate the target position 

from the observed hybrid BR and TDOA measurements. 

 

3. CRLB 

 

We shall establish the performance bound through CRLB 

analysis for the target localization problem. The CRLB is 

the lowest possible variance that any unbiased estimator can 

achieve [22]. The density function of the composite 

Gaussian measurement is 


11

( | ) exp( ( ) ( ))
2

o T of K    mm u m m Q m m  

where K  is a constant. Under this model, the CRLB of u  is 

given by 1CRLB ( ) J u , where ( )J u  is the Fisher 

information matrix (FIM) equal to 

 1( )
o oT  m m

u m uJ u Q  

where    b
a b a . ,

o o o T
T T    

 
m r r
u u u  are the partial 

derivatives of BR and TDOA measurement functions with 

respect to u  evaluated at its true value. 

Actually, 
o

r
u  is a 3MN   matrix and the row is 

 , ,

o
ij

i j

r T T  u u t u sρ ρ  

where , ( )  a bρ a b a b  denotes a unit vector from b  to a . 

Similar to 
o

r
u , 

o

r
u  is a ( 1) 3N    matrix, whose  thj  

row can be written as 

 1

1, ,

o
j

j

r T T  u u s u sρ ρ  

Given (7), (8) and (6), the CRLB of u  can be obtained. 
 

4. CLOSED-FORM SOLUTION 

 

We shall develop a closed-form solution for the target 

localization problem using the hybrid BR and TDOA 

measurements. The proposed algorithm is comprised of two 

stages. The first stage establishes a set of pseudolinear 

equations by introducing nuisance parameters and estimates 

the target position. The second stage estimates the error term 

of first stage solution through exploring the relationship 

between target position and nuisance variables [10]. 

First Stage: We first express (1) as o s t
ij j ij ir r d r   . 

Substituting o
ij ij ijr r r  , rearranging and squaring both 

sides yields the BR measurement equations 



22 2 2( )

2( ) 2( )

t T
i ij ij ij ij j i j

T s
j i ij ij j

r r r r d

r d r

   

   

s t s

s t u
 

for 1,2, ,i M  and 1,2, ,j N . 

Upon rewriting (3) as 1 1
o s s
j jr r r  , substituting 

1 1 1
o
j j jr r r   and squaring both sides, we arrive at the 

TDOA measurement equations 

 2
1 1 1 1 1 1 12 2( ) 2s T T T s

j j j j j j jr r r r r     s s s s s s u  
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for 2, ,j N . 

In both (9) and (10), the second-order noise terms have 

been ignored. Besides, they are nonlinear with respect to the 

unknown target position u  since s
jr  is related to u  through 

s
j jr  u s . The solution derivation begins by defining an 

unknown vector 1 2, , , ,
T

o T s s s
Nr r r 

 
φ u , which contains 

the unknown target position and N  nuisance variables. 

Stacking (9) and (10), and putting them together yields 

the matrix form equation 

 1 1 1
o  B m h G φ  

In (11), the vector 1 1, 1,,
T

T T
r r

 
 

h h h . The entries of 1,rh  

and 1,rh  are 2 2 2( )T
ij ij ij j i jr r d  s t s  and 2

1 1 1
T T

j j jr  s s s s , 

respectively. The matrix 1G  can be represented as 

1, 1,,
T

T T
r r

 
 
G G . The rows of 1,rG  and 1,rG  are 2 ( ) ,T

j i
 


s t  

1, ( ),T T
j ij ij N jr d 




0 0  and 1 1 12 ( ) , ,T T
j j Nr 

  
 

s s 0 , where 

k0  denotes a k -dimensional zero column vector. 

The matrix  1 1, 1,,r rblkdiagB B B . The submatrix 

1,rB  is equal to 1 22 ( , , , )t t t
N Mdiag r r rI , where NI  denotes 

an N -dimensional identity matrix and   stands for the 

Kronecker product. Submatrix 1,rB  is 2 32 ( , , , )s s s
Ndiag r r r . 

The weighted least squares (WLS) solution to (11) is 


1

1 1 1 1 1 1( )T Tφ G W G G W h  

where 
1 1

1 1 1
T

m
  W B Q B  is the weighting matrix. The 

acquisition of 1W  relys on the true target position through 

1B . So we can first set 1W  as 
1

m


Q  to produce an initial 

solution. The initial position is used to form the desired 1W . 

Then, the first stage solution is obtained from the new 1W . 

According to the previous studies [7, 15-17], when the 

measurement noise is small, the first stage solution has 

negligible bias, and the covariance matrix of φ  can be 

approximated by 
1

1 1 1cov( ) ( )T 
φ G W G . 

The first stage processing, however, cannot reach CRLB 

accuracy. In the next stage, we shall explore the dependency 

in the elements of φ  to improve the localization accuracy. 

Second Stage: The first stage solution can be 

represented as 1 2
ˆ ˆ ˆ ˆ, , , ,

T
T s s s o

Nr r r    
 

φ u φ φ , where 

1 2, , , ,
T

T s s s
Nr r r      

 
φ u  is the related estimation error. 

Substituting ˆ u u u  into 
s
j jr  u s  and applying the 

Taylor-series expansion up to the first-order term obtains 

 ˆ ,
ˆ

j

s T
j j jr     u su s u s ρ u  

Expressing s
jr  in terms of ˆs s s

j j jr r r   and putting it 

into (13) yields the solution equation that relates the 

estimated source position û  and the nuisance variable ˆs
jr  

 ˆ ,
ˆˆ

j

s s T
j j jr r    u su s ρ u  

which is linear with respect to u . In order to establish 

another cost function, we have an auxiliary equation 

 3  u 0 u  

in which the left u  denotes random error. 

Combining (14) and (15) gives the matrix form equation 

 2 2 2   B φ h G u  

where 2 3 2,,
T

T T
r

 
 

h 0 h  and 2 3 2,,
T

T T
r

  
 

G I G . The  thj  

element of 2,rh  is ˆˆs
j jr  u s . The  thj  row of 2,rG  is 

ˆ , j

T u sρ . The matrix 2B  is given by 2 3 NB I . 

The WLS solution to (16) is 


1

2 2 2 2 2 2
ˆ ( )T T u G W G G W h  

where  
1 1

2 2 2covT  W B φ B  is the weighting matrix. If 

we assume that the BR and TDOA measurements noise are 

sufficiently small so that the error in 2G  can be ignored, and 

the covariance matrix of ˆu  can be approximately equal to 

   1
2 2 2

ˆcov ( )T u G W G  

The final source position estimate is obtained from 

subtracting ˆu  from the first stage localization result 

 ˆ ˆ u u u  

A point to note is that when M N , we should use the 

, 1,2, ,t
ir i M  and 1

sr  as the nuisance variables. Under 

this condition, we had 4M   unknowns rather than 3N  . 

We will carry on the research in the future work. 

 

5. PERFORMANCE ANALYSIS 

 

We shall evaluate the performance of the proposed method 

by comparing its covariance matrix with the CRLB under 

small noise conditions. By substituting ˆ  u u u  into (19), 

we have the final localization error  ˆ    u u u u . 

Hence, we realize that cov( )u  would be equal to  ˆcov u . 

After substituting sequentially 2W ,  cov φ  and 1W , we 

can express the inverse of cov( )u  as 

  
1 1

3 3cov T
m

 u G Q G  

where 
1 1

3 1 1 2 2
 G B G B G . 

Comparing (20) and (6) reveals that they have the same 

expression structure. The subsequent analysis require several 

small noise conditions where 
o

ij ijr r , 
t

ij ir r , 

1 1
o

j jr r , and 1
s

j jr r . After some straightforward 
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mathematical manipulations, under the above conditions, it 

can be verified that 

 3

o

m
uG  

Putting (21) into (20) and comparing with (6), it can be 

immediately concluded that 

 cov( ) CRLB( )u u  

Consequently, the proposed solver is able to reach the 

CRLB approximately when above conditions are satisfied. 
 

6. SIMULATIONS 
 
Simulations are performed to assess the performance of the 

proposed method. The number of available transmitters and 

receivers are 5M   and 5N  , and their positions are 

tabulated in Table 1. The target is at [600,650,550]Tu m. 

The covariance matrices of the BR and TDOA 

measurements are set as 2
d MNrQ I  and 2

1d N rQ I . We 

use the CRLB as a benchmark for performance evaluation. 

The number of ensemble runs is 5000. 
 

Table 1. Positions of transmitters and receivers (m) 

Tx 
t
ix  

t
iy  

t
iz  Rx 

s
jx  

s
jy  

s
jz  

1 350 200 100 1 0 500 200 

2 450 300 250 2 500 0 100 

3 300 100 150 3 -500 0 150 

4 400 150 100 4 0 -500 100 

5 300 500 200 5 0 0 100 
 
Fig. 1 illustrates the root mean square error (RMSE) of 

the proposed estimator as the range measurement noise 

power increases when 2M   and 5N  . In this scenario, 

the target can be positioned using TDOA measurement only. 

As can be seen from the figure, the proposed estimator is 

shown to outperform the BR-based and TDOA-based 

methods. The performance improvement by adding TDOA 

measurements becomes apparent as noise power increases. 

In particular, the CRLB value of joint location is lowered by 

nearly 1.4 dB than that of elliptic location. The proposed 

algorithm works well and attains the CRLB accuracy until 

the noise power about 25 dB. Nevertheless, the BR-based 

and TDOA-based algorithms begin to deviate from each 

bound much earlier than that of the proposed method. 

In addition, the accuracy improvement of the joint 

localization method with respect to the BR-based method is 

affected by the number of transmitters. Table 2 summarizes 

the simulation results, which indicate that the accuracy 

improvement decreases as the number of transmitters 

increases. Note that when 1M  , the BR-based method is 

not able to locate the target, and so that of joint localization. 
 

Table 2. The average improvement of localization accuracy (N=5) 

Improvment M=2 M=3 M=4 M=5 

RMSE (dB) 3.80 1.37 0.96 0.56 

CRLB (dB) 1.41 0.97 0.81 0.49 
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Fig. 1. The comparision of localization accuracy (M=2, N=5) 
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Fig. 2. The comparision of localization accuracy (M=2, N=4) 
 
Fig. 2 shows the results at different levels of range 

measurement noise power when 2M   and 4N  . In this 

scenario, the TDOA-based localization method fails to work 

due to the number of receivers is less than 5. The 

improvement of estimation accuracy owing to the 

contribution of TDOA measurements is obvious especially 

when the measurement noise is large, even though the target 

is not able to be located using TDOA measurements only. 

The other observations are similar to those from Fig. 1. 
 

7. CONCLUSION 
 
In this paper, we proposed a closed-form estimator to locate 

a single target using the hybrid BR and TDOA 

measurements in multistatic radar. The obtained two-stage 

algorithm was derived through introducing nuisance 

variables in the first stage and refining the estimate in the 

second stage. The use of TDOA measurements can improve 

the target localization accuracy. The proposed method was 

shown to be able to attain the CRLB accuracy under small 

Gaussian measurement noise, which is supported by the 

theoretical analysis and simulation results. 
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