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ABSTRACT

This paper describes an unsupervised adaptation method of deep
neural networks (DNNs) regarding discriminative sound source lo-
calization (SSL). DNNs-based SSL and its unsupervised adaptation
fail under different conditions from those during training. The es-
timations sometimes include incoherent unpredictable errors due to
the NN’s non-linearity. We propose an eliminative posterior prob-
ability constraint using a model-based SSL for unsupervised DNNs
adaptation. This constraint forces the probability of “less possible
candidates” to become zero to eliminate incoherent errors. The can-
didates are indicated by a model-based SSL method because it can
estimate the azimuth of the sound source with moderate accuracy
and explicit reasoning. As a result, the localization performance of
adapted DNNs improved more than that of model-based SSL. Exper-
imental results showed that our method improved localization cor-
rectness of 1D azimuth and 3D regions by a maximum of 13.3 and
5.9 points compared with the model-based SSL.

Index Terms— sound source localization, neural networks, un-
supervised adaptation

1. INTRODUCTION

1.1. Motivation

Sound source localization (SSL) is a necessary function for au-
tonomous systems, such as robots [1], because it enables them to
detect sound and determine its location. Such systems are expected
to work robustly in unknown environments. SSL that is based on
a data-driven machine learning approach, including the use of deep
neural networks (DNNs) [2, 3, 4, 5, 6, 7, 8], is compatible with such
autonomous systems for three reasons: the number of microphones
and their arrangement on systems may not be decided on the basis
of SSL performance, this type of SSL automatically calibrates any
configurations to systems, and systems can collect training data
by themselves if necessary. Here, discriminative DNNs directly
estimate short-time posterior probabilities of the “position labels”
corresponding to the presence of sound source and 3D regions in
space.

The adaptation of DNNs to unknown environments is essential
because the performance of DNNs degrades under conditions that
are different from those during training, and unknown patterns will
inevitably appear for real-world use. DNNs are very sensitive to the
“condition/environment” that includes source position, reverberation
and signal-to-noise ratio (SNR). We previously tried an utterance-
wise unsupervised adaptation of DNNs-based SSL using entropy
cost function [9]. This method adapts some parameters of NNs to
observed speech signals. Performance under unknown conditions
improved slightly, and the empirical early stopping method [10] was
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Fig. 1. Problems regarding DNNs-based SSL and our approach

required to avoid adaptation failures. Since the minimization of en-
tropy is a necessary condition but not enough to satisfactorily im-
prove performance, more specific adaptation criterion is required for
further stable performance improvement.

The errors of DNN-based SSL under unknown conditions have
been categorized into two types of error: a) close errors and b) in-
coherent errors (left-hand side of Fig. 1). The former means that the
geometrical distance between the estimated source location and the
ground truth is short. For example, the ground truth is 0◦ in azimuth,
and the estimation is 10◦. The latter pattern is caused by the non-
linearity of DNNs or insufficient training data, which is difficult to
explain rationally. For example, the ground truth is 90◦ in azimuth,
but DNNs confidently estimate it as 15◦. DNNs also tend to output
“no sound” labels for unknown conditions or after failure to adapt.
On the contrary, an advantage of traditional model-based SSL [11] is
the explicit reasoning that provides for its estimations and the moder-
ate performance under various conditions, while DNNs are special-
ized to the conditions similar to those encountered during training.

We propose an eliminative constraint to suppress suspicious pos-
terior probability using a model-based SSL to avoid incoherent er-
rors during adaptation (right-hand side of Fig. 1). The reduction of
incoherent errors is one of the minimum requirements for creating
stable behavior in DNNs. Our constraint forces the estimated poste-
rior probability of “less possible candidates” to become zero. These
candidates are indicated by a model-based SSL method that esti-
mates the azimuth and the presence of a sound source in a more
stable manner than DNNs under unknown conditions. Our method
makes the adaptation procedure more stable and improves localiza-
tion correctness both of 3D regions and 1D azimuth better than those
of model-based SSL alone. Our approach does not assume a specific
DNNs configuration and can be applied even after the adaptation of
the model-based SSL. We conducted experiments to assess the per-
formance of the adaptation method under completely open condi-
tions compared with the training conditions in terms of microphone
devices, reverberation, source positions, and SNR.

Our contributions to the SSL area are 1) the stable unsupervised
adaptation method combined with model-based and DNNs-based
SSL and 2) the analysis and discussion of DNNs behavior trained
by data with over 10,000 position patterns.
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1.2. Relation to Prior Work

Unsupervised adaptation of DNNs-based SSL, especially in 3D
space, has not been studied much to the best of our knowledge
while more NNs-based SSL methods have been proposed recently
[5, 7, 12]. NNs-based SSL has been widely studied with narrow-
band antennas [3], but the topic of adaptation has not been re-
searched because array environments do not change dramatically.
The azimuth, not the height or depth, is usually estimated because
the far-field model is usually assumed.

DNNs used in automatic speech recognition (ASR) have sev-
eral model adaptation methods that can avoid overfitting, mainly re-
garding speaker adaptation [13, 14]. They focus on speech signals
instead of spatial information, which is important for SSL. These
adaptation methods usually require several utterances (more than
five) for adaptation while one utterance or fewer is desirable for SSL.
Unsupervised adaptations are based on a statistical generative model
and maximum likelihood estimation, such as constrained maximum
likelihood linear regression (CMLLR) [15]. More popular semi-
supervised approaches use a linear input network (LIN) [16] or a
linear hidden network (LHN) [17]; A posterior of parameters is max-
imized for cost functions to avoid overfitting [18].

2. BASELINE: UNSUPERVISED ADAPTATION USING
ENTROPY MINIMIZATION

This section is an overview of unsupervised adaptation of DNNs, as
proposed in [9]. In this paper, all the variables in the models are
represented in the short-time Fourier transformation (STFT) domain
with frame index t and frequency-bin index w.

2.1. Posterior Probability Estimation using DNNs

The DNNs estimate the posterior probability p(z|f) of discrete vari-
able z with K location labels from input feature f . The discrete
labels z are defined by the system developer in accordance with
the required resolution of the application. For example, the label
“no-sound” represents a sound without a source (only noises), and
the label “0◦” represents a sound source located in the range of
[−2.5◦, 2.5◦] in azimuth. We assume that the label set is the com-
bination of the patterns for depth, height, and azimuth (0◦, 5◦, ...,
355◦) plus “no-sound”. The DNNs are trained by using various data
with different sound positions, reverberations, and so on.

The overview of the input features and DNNs’ configuration is
shown in Fig. 2. We used a set of noise-space eigenvectors as the
input of DNNs [19, 6], and the last layer of DNNs was a soft-max
function to represent the posterior probability of location labels. The
DNNs can deal with non-speech signals and multiple sound sources
[8]. Since the concept of this research is not strongly influenced by
the configuration of DNNs, please see [9] for more detail.

We will explain the process to obtain the input features because
they are also used in the model-based SSL. The process is as follows:
1) Calculate a correlation matrix Rw = E[xwx

H
w ] of the observed

signal vector xw[t] = [xw,1[t], ..., xw,N [t]]T from N microphones.
2) Apply eigenvalue decomposition (EVD) to Rw and sort eigen
vectors in descending order of eigen values. 3) Select N−M eigen-
vectors ew,j in noise-space Sn. We assume M = 1 to localize
one sound source. 4) Extract the following feature: f is a set of
eigenvectors [eT

wl,M+1, ..., e
T
wl,N

, ..., eT
wh,M+1, ..., e

T
wh,N ]T where

wl and wh are respectively the lower and upper indices of the fre-
quency bin used for localization. This feature is extracted every 110
milliseconds because of the mean operation for Rw (block-wise).
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Fig. 2. Configuration of DNNs

2.2. Parameter Adaptation by Entropy Minimization

Some parameters of the DNNs are updated by minimizing the cost
function in the adaptation phase. The following entropy Je was used
for the cost function in previous work because the minimum entropy
(ambiguity) is one of the necessary conditions for the ideal state in
terms of discrimination:

Je(Θ) = E[−∑ipi log pi],
∂J

∂pi
(Θ) = E[− log pi − 1], (1)

where Θ represents the target parameters for updates in the DNNs
and pi = p(i|f) represents the estimated probability of label i from
the i-th output node zi of the DNNs as shown in Fig. 2. The expec-
tation means taking the average of the blocks used for adaptation,
such as one utterance or fewer. By applying the chain rule and tak-
ing the partial derivatives of the output variables of each layer, we
can calculate the gradient of the target parameters for the updates.

A linear input network (LIN) [16] was used for the parameters
for adaptation. Each eigenvector in the input feature f is linearly
transformed, and the update rules are as follows:

êw,i = V wew,i + bw, (i = M + 1, ..., N), (2)

V w ← V w − α
∑

iδw,ie
H
w,i, bw ← bw − α

∑
iδw,i, (3)

where V w ∈ C
N×N and bw ∈ C

N represent a complex-valued ma-
trix and bias vector, respectively. δw,i is a propagated error vector
corresponding to each input vector. The weight V w is shared at each
frequency bin, and its initial value is an identity matrix. This trans-
formation is expected to modify the error of the extracted eigenvec-
tors caused by reverberation or noise. The early stopping technique
[10] was applied to avoid over-fitting or trivial solutions.

3. PROPOSED METHOD

The overview of our adaptation process is shown in Fig. 3. First, the
model-based SSL outputs localization scores for each azimuth label.
Then, we select less possible candidates on the basis of these scores.
Finally, the parameters of the DNNs are updated by minimizing the
cost function on the basis of entropy with eliminative constraint ex-
pressed by weight m for such candidates. We explain the cost func-
tion, and then the calculation of the weight and model-based SSL.

3.1. Cost Function using Eliminative Constraint

We design the following new cost function J for adaptation:

J(Θ) = Je(Θ) + λE[
∑

imip
2
i ], (4)

where λ is a weight for a constraint term and mi is a weight pa-
rameter of pi. The second term is an eliminative constraint to reject
incoherent (less possible) candidates. The weight mi becomes 1 if
the corresponding location label i is incoherent. mi = 0 means that
the label seems confident. For example, if the azimuth estimation
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Fig. 3. Overview of our method

is confident but its depth and height are not, the weight for these
depth and height labels at the same azimuth becomes 0. Since the
minimum of the second-term is zero, our constraint does not suffer
entropy minimization.

3.2. Estimation of Less Possible Candidates based on MUSIC

We used a multiple signal classification (MUSIC) method as a
model-based SSL. This method calculates a type of likelihood of
source location q(θ, d, h) at azimuth θ, depth d, and height h. We
represent the source location in space as r = [θ, d, h]. The advan-
tages of MUSIC are the high directional resolution to distinguish the
locations and the scalability for multiple sound sources.

The sound source position r can be estimated on the basis of
the orthogonality between eigenvectors in noise-space ew,i ∈ Sn

and the reference steering vectors a(r). The reference steer-
ing vectors can be obtained from the analytical transfer func-
tion model or the measured impulse responses at discrete points
rv = [θv, dv, hv], (v = 1, ..., V ). The MUSIC score qw(r) at
frequency bin w is defined as

qw(r) = 1/(
∑N

i=M+1|aH
w (r)ew,i|/||aw(r)||). (5)

The function gives a high value when r is the true position of the
source rm. The broad-band score q is calculated by averaging qw
from a lower bin wl to an upper bin wh. Then, we calculate the az-
imuth score q(θv) =

∑
d,h q(θv, d, h) with summation over height

and depth because the discrimination of depth and height is usually
difficult if we cannot design a good microphone arrangement.

We estimate the weight m by using reliable azimuth scores. The
default value of weight is zero. First, a threshold is given to the high-
est score with a parameter Tth to judge the presence of sound. If the
score is less than Tth, the weight that corresponds to the sound pres-
ence label becomes 1. If not, we choose the top-G ambiguous can-
didates in descending order of score. The weight that corresponds
to the location whose azimuth is equal to the G candidates remains
0, and the weight of others becomes 1. The DNNs search the best
locations from among the restricted candidates whose weights are
defined as 1 during adaptation.

4. EXPERIMENTS

4.1. Experimental Settings

Recording conditions: All speech data for training were generated
using impulse responses recorded in real anechoic and reverberant
rooms. The size of the reverberant room was 7.83 [m] × 5.87 [m] ×
2.57 [m] (depth x width x height), and its reverberant time was about
RT20 700 [ms]. Four-channel impulse responses were recorded at
16 kHz by using microphones horizontally attached to egg-shaped
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Fig. 4. 1) Locations for impulse responses. 2) Mapping IDs
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Fig. 5. Locations for test set. The mic-array and loud speaker are
different from those used in Fig. 4.

Table 1. Experiment Parameters
Number of sources 0 or 1 at each block
Training source Speech of 48 males and 48 females
Test source 2 males and 2 females (speaker open)
Impulse responses Anechoic room
for training Reverberant room (RT20 800 [ms])
Position patterns 18,000 = 360 (azimuth)
for training data × 5 (depth) × 5 (height) × 2 (room)
Position labels 289 = 72 azimuths × 4 + no-sound
DNN Input / Output dim. 1536 ({ei,w}i=2,3,4,w=21,...,148) / 289
DNN Middle Layer Shown in Fig. 2

surface1. The resolution of the azimuth was 1◦ (360 directions),
and there were 25 combinations of distance and height, as shown in
Fig. 4. The speech signal data for the test set were recorded with a
different loud speaker in a different reverberant room as shown in
Fig. 5. There were 16 location patterns in total: eight positions in
2D-plane [No.1, ..., No.8] × two heights [1.0 m, 1.6 m].
Feature extraction: The STFT parameters were set to be the same
for all experiments: the size of the Hamming window was 512 points
(32 [ms]), and the shift size was 160 points (10 [ms]). The block size
for calculating Rw was 11 (110 [ms]). The bandwidth used for the
features was set to [656 − 4625] [Hz], and 128 frequency bins from
21 to 148 in the bin-index were used for SSL.
Data for training and test sets: The speech data for the training
came from 48 male and 48 female speakers using the Acoustical So-
ciety of Japan-Japanese Newspaper Article Sentences (ASJ-JNAS)
corpora2 (one hour in total). The data for the test came from two
male and two female speakers and were different from the training
data in the same corpora. There were fifteen utterances in total, and
the content had phonetically balanced sentences. The training data
were generated using all four-channel impulse responses, and we
randomly selected 15% from them. Gaussian noise of 20 dB was
added to the speech signals of the training set, and 0, 10 and 20
dB were added to the test set. The total number of labels was 289
and the resolution in azimuth for localization was 5◦. The label ID
“0” represents the “no sound source”, and the others represent the
source locations, i.e., IDs 1-72 for the azimuth in Region A, IDs
73-144, 145-216, and 217-288 for the azimuth in Regions B, C,
and D in Fig.4. The correct location labels were added on the basis
of voice activity of clean speech signals block-by-block (every 110
[ms]). Configurations are listed in Table 1.

1http://www.sifi.co.jp/system/modules/pico/index.php?content id=39
2http://research.nii.ac.jp/src/JNAS.html
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Table 2. Localization correctness in total (%)
Condition Baselines Proposed

Resolution SNR MUSIC DNNs DNNs DNNs
(dB) w/o adapt. (λ = 0) (λ = 10)

1D azimuth 0 50.7 34.8 29.3 64.0

(73 labels) 10 77.7 60.0 49.4 83.1
20 88.1 82.2 83.6 89.4

3D regions 0 40.2 30.8 29.1 44.2

(289 labels) 10 50.1 41.7 40.8 56.0
20 57.4 54.1 58.6 61.6

Configuration of DNNs (Fig. 2): The size of directional activators
was 4×128 in each w-th sub-band in the DNNs. There were sixteen
blocks of linear projection (LP2) to combine intermediate outputs.
The network sizes [dim. of input, dim. of output] of the LP1, ..., and
LP5 corresponded to 386×64, 512×64, 1024×1024, 1024×1024,
and 1024×289, respectively. There were a total of 1536 dimensions
of features for the DNN input, and 289 output dimensions to classify
all labels (K = 289). All weight parameters were initialized by
using a Gaussian distribution N(0, 0.025). The cross-entropy was
used as the cost function for training, and we stopped training af-
ter three epochs because there was no improvement in block-level
correctness for the training set. The unsupervised adaptation was
applied to each utterance (5 sec. on average), and we stopped the
adaptation after 490 iterations. The G for weight calculation was 5,
and this allowed a ±12.5-degree error in azimuth. We checked the
performance of several learning rates α = [0.5, 0.1, 0.05] and con-
straint weights λ = [0, 5, 10, 20]. The influence of these parameters
will be also explained in results.
Configuration of MUSIC: There were 1,800 reference steering vec-
tors calculated from anechoic impulse responses (72 azimuth × 5
depth × 5 height, i.e. V = 1800), as shown in Fig. 4. The score
for the 3D regions is calculated by the summing score q(r) over the
positions in each region. The threshold Tth for judging the presence
of sound was set to maximize the localization correctness of each
SNR of the test set to show the performance limitations.
Evaluation criteria: We calculated the correctness of the test set
classification at the block level. We allowed a ±7.5-degree error in
azimuth. For example, when the ground truth is 0◦, the estimated
locations at 355◦ and 5◦ are also considered to be correct. There
was a total of 785 blocks for the test data per position, and the ratio
of “no-sound” blocks for the test speech signals was 28.8%.

4.2. Results and Discussions

Table 2 summarizes the total 1D-azimuth and 3D-region localiza-
tion correctness of MUSIC and each DNN in the test set. The w/o
adapt. entries denote the results of DNNs without adaptation. The
20 dB SNR was the same condition as that in the training phase.
Our proposed DNNs resulted in having the best performance in all
cases. Our method outperformed MUSIC by 5.9 points at 10 dB re-
garding the 3D regions and 13.3 points at 0 dB SNR regarding the
1D azimuth. The larger λ > 4 seemed to improve performance,
but λ = 10 and 20 had almost the same results. The azimuth cor-
rectness of our method is better than that of MUSIC, which gives
top-G ambiguous candidates to DNNs. This fact indicates that the
error patterns between the DNNs and MUSIC were different. The
performance of the adapted DNNs without any constraint λ = 0 de-
graded as the SNR worsened. Note that the 3D-region correctness
of our method was worse than MUSIC in some positions because of
the small number of depth and height patterns compared with the
number of azimuth patterns in the training data.
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Figure 6 shows the relationship between the correctness for the
3D regions and the number of iterations during adaptation in the case
of the 10 dB test set. The performance of the baseline DNNs with
λ = 0 degraded after 30 iterations. This can be avoided by applying
early stopping heuristically. On the other hand, our method stably
converged to one of having high correctness, and a larger learning
rate α accelerated the convergence speed. Therefore, hundreds of
iterations are not required for adaptation.

Figure 7 shows an example of the 3D-region score of MUSIC
and each DNN on a log scale. The vertical axis represents the num-
ber of blocks (corresponding to time) and the horizontal axis rep-
resents location IDs, shown in Fig. 4. The MUSIC score is a blur
but does not contain incoherent peaks. The unadapted and adapted
DNNs with λ = 0 include some incoherent peaks. Our constraint
reduced these errors, and the DNNs could estimate clearer posterior
probabilities compared with that of MUSIC.

4.3. Remaining Issues

The essential issues are performance dependency on locations, adap-
tation with shorter duration than one utterance, and an efficient and
automatic real-world data-augmentation method. The first issue will
be solved by the data-augmentation of position patterns based on
generative model of arriving sound signals. The second issue must
be solved regarding real-time processing and moving sources. The
last issue is required to improve the potential performance of DNNs.
Since autonomous systems, such as robots, can collect data automat-
ically, such real-world data augmentation will be more important in
the future. An alternative adaptation of model-based and DNNs-
based SSL has the potential for further improvement.

5. CONCLUSION

We tackled the unsupervised adaptation of DNNs-based SSL regard-
ing unknown conditions. We proposed an eliminative constraint of
possibility based on a model-based SSL to suppress incoherent er-
rors during adaptation. Experiments revealed that our adapted DNNs
improved the localization correctness of 1D azimuth and 3D regions
under unknown conditions compared to that of model-based SSL.
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