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ABSTRACT

We consider the problem of unknown emitter geolocation us-
ing the time difference of arrival (TDOA) of the path rays
through the ionosphere by multiple coordinated distant re-
ceivers. We formulate the geolocation in the sense of max-
imum likelihood with the exact ray expressions for the quasi-
parabolic (QP) ionosphere, which is a highly nonlinear and
non-convex optimization problem. By carefully studying the
characteristic of the group path ray, we propose an efficient
procedure to approach the optimal solution of the geoloca-
tion. Simulation results show that the geolocation error ap-
proaches the associated Cramer-Rao bound when the knowl-
edge of the ionosphere is available. We also performed Monte
Carlo runs to evaluate the performance of the geolocation
when the knowledge of the ionosphere is not exactly known,
e.g., the QP model parameters are perturbed. Simulation re-
sults show that the geolocation performance under the pertur-
bation within a given certain range is acceptable.

Index Terms— Geolocation, QP model, TDOA, Nonlin-
ear optimization, Newton method

1. INTRODUCTION

High-frequency geolocation is very useful in a number of
civilian and military fields, such as navigation, aviation,mar-
itime search and rescue or support, radio spectrum monitoring
and management. However, the geolocation is affected by a
number of factors, where the first and the most important fac-
tor is that the model of the electron density distribution and
its associated parameters of the ionosphere [1][2][3] are not
perfectly known. These lead to difficulties to perform the ge-
olocation [10] with high accuracy in practice.

Recently, localization with time differences of arrivals
(TDOAs) by employing a synchronized sensor network or
multiple coordinated receivers has been widely studied based
on the line-of-sight propagation model in the atmosphere and
can be performed efficiently [7][8][9].
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However, the path ray of the electromagnetic wave in the
ionosphere is a curved line instead of a straight one, which
follows the Fermat principle and can be exactly calculated
under the quasi-parabolic (QP) model [4][5]. In this case, the
TDOA localization methods based on the line-of-sight model
will no longer work.

In this paper, we approach the problem of unknown emit-
ter geolocation using TDOA of the rays in the ionosphere by
multiple coordinated distant receivers and formulate the prob-
lem in the sense of maximum likelihood with the exact ray ex-
pressions for the the quasi-parabolic (QP) ionosphere, which
is a highly nonlinear and non-convex optimization problem.
In addition, we numerically study the effects of QP model
perturbations on the geolocation performance.

2. PROBLEM FORMULATION

2.1. Path Ray Model in the Ionosphere

The QP ionosphere model is defined by the equation of a
parabola in electron-density distribution versus height.The
QP model is given by (see Eqn. (2) in [4])
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whereNe denotes the electron density with the maximum
valueNm, r is the radial distance from earth center (height +
earth radius),rm is the value ofr whereNe reachesNm (hm

+ earth radius,hm is the hight withNm), rb is the value ofr at
the layer base, which is equal torm− ym, andym is the layer
semithickness. By neglecting the effects of the geomagnetic
field, the situation that a ray passes through the ionosphereis
shown in Fig. 1, whereD is the distance traversed and mea-
sured along the earth’s surface,P ′ is the group path,β0 is the
ray flying angle,r0 is the earth radius,x = [x, y, z]T ∈ R3

is the location of the unknown emitter, andSi ∈ R3 is the
location of thei-th distant receiver at earth surface. Withf
denoting the operating frequency andfc denoting the criti-
cal frequency of the ionosphere, the surface distance and the
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Fig. 1. Ray path geometry

group path can be exactly derived as shown by [4][5]:
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2.2. Geolocation of an Unknown Emitter Using TDOA
Measurements

Assuming that the locations of multiple distant receivers with
synchronization are known and the knowledge of the param-
eters of the QP model are available, the geolocation of an un-
known emitter, shown in Fig. 1, using TDOA measurements
can be straightforwardly formulated as the following non-
linear least square problem under the surface distance con-

straints:

min
x,βi,i=1,··· ,M

M−1∑

i=1

M∑

j,i<j

(τi − τj − τij)
2

subject to‖Si − x‖ = 2r0 sin
(Di

2r0

)
, i = 1, 2, ...,M,

‖x‖ = r0. (3)

whereM is the number of receivers,P ′
j , Dj , andτj , P ′

j/c
(c is the light speed) are the group path, the surface distance,
and the signal propagation delay from the unknown source
to thej-th receivers, respectively,τij = τi − τj is the TDOA
between thei-th and thej-th receiver, which can only be mea-
sured in practice.

Considering the facts that a ray in the ionosphere follows
Fermat principle and there are correlations between TDOA
measurement noises, the maximum likelihood estimation of
the unknown emitter locationx can be written as the follow-
ing optimization problem:

min
x,β

(GP − τ )TΣ−1(GP − τ ) + δ

M∑

i=1

P ′
i ,

subject to‖Si − x‖ = 2r0 sin
(Di

2r0

)
, i = 1, 2, ...,M,

‖x‖ = r0. (4)

whereΣ = (cσn)
2(1N×N + IN ) (1N×N is the matrix with

each entry of1, IN is the identity matrix, andσ2
n is the vari-

ance of TDOA measurement noise) withN = M(M − 1)/2,
δ is small positive factor for penalization to all the rays, and
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,

P = [P ′
1, P

′
2, ..., P

′
M ]T ,

β = [β1, β2, ..., βM ]T ,

τ = [τ12, ..., τ1M , τ23, ..., τ2M , ..., τ(M−1),M ]T × c. (5)

Notice that the optimization problem (4) is highly nonlin-
ear and non-convex, which cannot be solved directly. In the
following, we propose an efficient approach to solve it.

3. AN EFFICIENT APPROACH TO SOLVE THE
GELOCATION PROBLEM

By carefully studying the characteristic of the objective func-
tion of (4), we found that the surface distanceD and the group
pathP ′ versus the flying angleβ0 under a given QP model
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are all convex within the range we concern. This led us to
approach the solution of (4) efficiently by the following pro-
cedure:

Step 1: Solving (4) without constraints to find the global
flying angles by the coordinate descent algorithm [6]

According to the above analysis, we consider that the ob-
jective function of (4) would be convex with respect to all
flying angles. In this case, solving (4) by the coordinate de-
scent algorithm [6] will be an efficient way to find the global
solution of anglesβ. The problem of (4) without constraints
becomes

min
β

(GP − τ )TΣ−1(GP − τ ) + δ
M∑

i=1

P ′
i . (6)

Let t represent the objective function of (6). By using the
coordinate descent algorithm to (6), each element ofβ is iter-
ated by

βi(k + 1) = βi(k) + α
dt(βi(k))

dβi

(7)

with a given initial value, whereα is the step size.
Step 2: Solving (4) with the constraints w.r.t.βi, i =

1, · · · ,M , to approach the optimal flying angles by the
Newton-like method for equality constraints [6]

Solvingx from the equality constraints in (4), substituting
it to the constraints, and then removing the constraint‖x‖ =
r0, the problem (4) with the equality constraints with respect
only toβi, i = 1, · · · ,M , becomes

min
β
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i

subject to‖Si − x̂‖ = 2r0 sin
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)
, i = 1, 2, ...,M, (8)

where
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with gi = 2r0 sin
(

Di

2r0

)
, ξ = 2[S1, . . . ,SM ]T , andA =

(ξT ξ)−1ξT .
By employing the Newton-like method for equality con-

straints [6] and using the global solution ofβ as the initial
point, the optimal angles can be approached by solving (8).

Due to the limited space, the derivation of the iterative
equations is omitted here.

Step 3: Solving (4) to find the optimal estimate ofx by the
Quasi-Newton method [6]

Since the unknown emitter is considered to be located at
the earth surface with‖x‖ = r0 (x = [x, y, z]T ), the coor-
dinatez can be expressed as a function of the other two,i.e.,

z = z(x, y). On the other hand, the flying angleβi can also
be expressed as a nonlinear function of the coordinatesx and
y according to the equality constraint equations in (4),i.e.,
βi = βi(x, y). This implies that (4) can be represented by

min
x,y

(GP − τ )TΣ−1(GP − τ ) + δ

M∑

i=1

P ′
i . (10)

With the initial point (x(0), y(0)) computed by (9) accord-
ing to the optimal flying anglesβopt obtained in Step 2,
and the derivatives related to the objective function of (10),
which include the ones from the equality constraints in (4),
(x(k), y(k)) is iterated by the Quasi-Newton’s method [6]
to solve (10). It is noted that in each iteration,βi(k) is

computed by minimizing
(
‖Si − x(k)‖ − 2r0 sin

(
Di

2r0

))2

under givenx(k), wherez(k) = ±
√
r20 − x(k)2 − y(k)2.

4. NUMERICAL RESULTS AND PERFORMANCE
ANALYSIS

4.1. The Cramer-Rao Bound on the Geolocation

The log-likelihood function of the unknown emitter localiza-
tion, by ignoring the constant term, is given by

L = −1

2
(GP − τ )TΣ−1(GP − τ ). (11)

When the parameters in the QP model are known, the
Cramer-Rao bound (CRB) for the geolocation can be derived
according to the associated Fisher information matrix. Here,
the location is defined asθ = [x, y]T as the emitter is located
on the earth surface. The associated Fisher information ma-
trix is defined and derived by

Jθ = −E

[
∂2L

∂θ∂θT

]

=
∂βT

∂θ

∂P

∂β

T

GT
Σ

−1G
∂P

∂βT

∂β

∂θT
(12)

The variance of the unknown emitter geolocationθ is
lower bounded by the corresponding diagonal of the inver-
sion of the associated Fisher information matrix:

CRBθ = Jθ
−1. (13)

4.2. Numerical Results

Here, we run Monte Carlo simulations to illustrate the per-
formance of the proposed geolocation method. We assume
that the unknown emitter is located on the surface of the earth
with the longitude and latitude of(116.24◦, 39.55◦) and five
coordinated distant receivers are available. With the use of the
Satellite Tool Kit (STK), it is convenient to determine the lon-
gitude and latitude coordinate of five distant receivers on the
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surface of the earth, which are(128.72◦, 40.55◦) for receiver
S1, (130.42◦, 38.68◦) for receiver S2, (132.94◦, 33.82◦)
for receiver S3, (130.90◦, 31.84◦) for receiver S4, and
(129.06◦, 35.63◦) for receiver S5, respectively. The dis-
tribution of the receivers is shown in Fig. 2.

Fig. 2. Geographical distribution of the distant receivers
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Fig. 3. RMSE of geolocation versus TDOA noise

By assuming that the parameters of the QP model are
known,i.e. fc = 10MHz, rm = 6650km, andym = 100km,
we perform 50 Monte Carlo runs to calculate the root-mean-
square error (RMSE) of the geolocation of the unknown emit-
ter according to the procedure proposed in Section 3, where
the operating frequency is set tof = 15MHz and the radius
of the earth isr0 = 6371.2km. The RMSE of the geoloca-
tion for the cases of employing three receivers ( S1, S2, S3 )
and all of five receivers are respectively plotted in Fig. 3. It
is seen from Fig. 3 that the RMSE of the proposed geoloca-
tion method is close to the associated CRB for both cases of
deploying three and five receivers.

Next, we perform Monte Carlo simulations to evaluate
the performance of geolocation when the knowledge of the
ionosphere is not accurate,i.e., the QP model parameters
are perturbed within given range from the true ones. In the
simulation, we assume thatfc is uniformly perturbed within
[−0.1MHz, +0.1MHz], andrm andym are each uniformly
perturbed within[−10km,+10km] around the true values,
and 20 perturbed samples for each parameter are used. The
true TDOA is calculated according to the perturbed param-

eters. We consider the above-mentioned parameters as the
estimated one, and perform 50 Monte Carlo runs for the goe-
location with three receivers (S1, S2, S3). The simulation
results in Fig. 4, Fig. 5, and Fig. 6 show that the effects
of perturbedfc in the QP model on performance is smaller
than the other two, and the geolocation performance under
the perturbation within a given certain range is acceptable. It
is obvious that more knowledge of the ionosphere will help
improve the geolocation performance.
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Fig. 4. Perturbedfc with rm andym unperturbed
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Fig. 5. Perturbedrm with fc andym unperturbed
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Fig. 6. Perturbedym with fc andrm unperturbed
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