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ABSTRACT

This paper formulates the general Adapt-then-Combine (ATC)
and Random Exchange (RndEx) diffusion filters for an arbi-
trary nonlinear state-space model. Subsequently, we propose
two novel marginal Particle Filter implementations of the gen-
eral ATC and RndEx filters using respectively a pure Sequen-
tial Monte Carlo (SMC) strategy and a hybrid Gaussian/SMC
methodology. The proposed algorithms are assessed via simu-
lation in a numerical example of cooperative target tracking
with received-signal-strength (RSS) sensors.

Index Terms— Diffusion Filters, Marginal Particle Filters,
RSS Target Tracking.

1. INTRODUCTION

In modern engineering systems, multiple agents dispersed over
remote nodes of a network often cooperate with each other to
execute a common signal processing task [1], [2] such as track-
ing a sequence of hidden state vectors. For linear, Gaussian
state-space models, a well-known fully distributed solution
to the cooperative signal tracking problem, where nodes have
access to local measurements only, but exchange messages
with their neighbors over partially connected networks, is the
Adapt-then-Combine (ATC) linear diffusion Kalman filter in-
troduced by Cattivelli and Sayed in [3].

More recently, the work by Dedecius and Djurić [4] has
provided a more comprehensive Bayesian interpretation of
ATC diffusion. In this paper, we use the general ATC Bayes
filter formulation in [4] for cooperative tracking of a sequence
of state vectors and propose two novel marginal particle fil-
ter [5] implementations of the general ATC Bayes filter in a
scenario with nonlinear state-space models. The proposed im-
plementations use respectively a pure Sequential Monte Carlo
(SMC) methodology and a hybrid Gaussian / SMC strategy in
the Adapt step, and a Gaussian approximation in the Combine
step. The ATC diffusion filter is then compared to an alterna-
tive marginal Random Exchange (RndEx) diffusion particle
filter, which is another novel algorithm introduced in this paper
that uses the RndEx diffusion strategy originally described in
[6], but, unlike the smoothing particle filter (PF) in [6], seeks
to build a recursive Monte Carlo representation directly of the

marginal posterior distribution of the unknown state at each
instant n conditioned on a random subset of measurements
coming from different locations in the network at different
time instants.

The paper is divided into 7 sections. Sec. 1 is this Introduc-
tion. The general problem formulation is presented in Sec. 2.
In Sec 3, we first review the general ATC diffusion Bayes filter
described in [4] and then introduce the two proposed marginal
PF implementations in Sec. 4. In Sec. 5, we discuss the al-
ternative RndEx diffusion Bayes filter, which is formulated
in a different way from [6], and describe again a marginal PF
implementation of the RndEx filter for an arbitrary state-space
model. Simulation results in an example of received-signal-
strength (RSS) tracking are presented in Sec. 6. Finally, we
present our conclusions in Sec. 7.

2. PROBLEM FORMULATION
Let {xn}, n ≥ 0, be a sequence of hidden continuous random
vectors1 taking values in <N . Likewise, let {yn,r}, n ≥ 0,
be a sequence of observed continuous random vectors taking
values in <L such that the sequence {yn,r} is available at the
rth node of a network of R sensors. The sequences {xn} and
{yn,r} are related, for n ≥ 0 and r ∈ {1, 2, . . . , R}, by the
discrete-time state-space model

xn+1 = fn(xn) + Gnun (1)
yn,r = hn,r(xn) + vn,r (2)

where the random vectors x0, {un}, and {vn,r} are mutually
independent for all n ≥ 0 and all r ∈ {1, 2, . . . , R}; un and
vn,r are Gaussian with zero mean and covariance matrices
respectively Qn and Rn,r, and fn and hn,r are arbitrary (pos-
sibly nonlinear) functions that are known for all n ≥ 0 and
all indexes r ∈ {1, 2, . . . , R}. Our goal is to derive fully dis-
tributed algorithms that recursively estimate xn at instant n
given y0:n,1:R defined as the vector that collects the observa-
tions {yk,r} for k = 0, 1, . . . , n and r = 1, 2, . . . , R.

1In this paper, we use lowercase letters, e.g. x, to denote both random
vectors and real vectors (including samples of random vectors), with the
distinction implicit in context.
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3. ATC DIFFUSION FILTER

The Adapt-then-Combine (ATC) diffusion filter originally de-
scribed in a Bayesian formulation in [4] assumes that, at instant
n − 1, each network node r has an available posterior prob-
ability density function (p.d.f.) pn−1|n−1,r(xn) that actually
depends on all network measurements that have contributed to
its computation from instant zero up to instant n− 1 ; for sim-
plicity, we omit the conditioning on the measurements in the
notation used in this Section. Furthermore, we use the symbol
∝ to denote “proportional to” with the implied normalization
constant such that the function on the left-hand side of the
expression integrates to one.
Adapt Step Let N̄(r) denote the closed neighborhood of the
node r, which includes both {r} and the indexes of all net-
work nodes that are connected to node r according to the
topology of the network graph. Each node r then first up-
dates pn−1|n−1,r(xn) using the locally available observations
{yn,u}, for all u ∈ N̄(r). Following the discussion in [4],
under the mutual independence assumptions in Sec. 2, the
general form of the Adapt step at node r at instant n is given
by

pn|n−1,r(xn) =

∫
<N

[ p(xn|xn−1)

× pn−1|n−1,r( xn−1 )
]
dxn−1 (3)

p̃n|n,r(xn) ∝

 ∏
u∈N̄(r)

p(yn,u|xn)


× pn|n−1,r(xn). (4)

Combine Step Following the local update in Eqs. (3) and (4),
the Combine step replaces p̃n|n,r(xn) at each node r with a
merged p.d.f.

pn|n,r(xn) ∝
∏

u∈N̄(r)

[
p̃n|n,u(xn)

]ar,u (5)

where
∑

u∈N̄(r) ar,u = 1, ∀r. As shown in [4], pn|n,r is
the merged p.d.f. that minimizes, at instant n and at node
r, the weighted average Kullback-Leibler (KL) divergence∑

u∈N̄(r) ar,uDKL(p? ||p̃n|n,u) over all possible p.d.f.’s p?.

4. ATC MARGINAL DIFFUSION PARTICLE FILTER

In the sequel, the notation x ∼ p(x) indicates that x is a
sample of a continuous random vector with p.d.f. p.

4.1. Marginal Particle Filter Adapt Step

Assume that node r at instant n − 1 has a weighted set of
samples {x(j)

n−1,r}, j = 1, . . . , J , with respective weights

{w(j)
n−1,r},

∑
j w

(j)
n−1,r = 1, such that the aforementioned set

of weighted samples represents the p.d.f. pn−1|n−1,r in the

Monte Carlo sense. The goal of marginal particle filtering [5]
in the context of this Section is to compute at instant n an
updated weighted sample set {x̃(j)

n,r} with respective weights
{w̃(j)

n,r} that represents now the updated p.d.f. p̃n|n,r obtained
from Eqs. (3) and (4). First, we make the Monte Carlo ap-
proximation

∫
<N p(xn|xn−1) pn−1|n−1,r( xn−1 ) dxn−1 ≈∑J

l=1 w
(l)
n−1,r p(xn|x(l)

n−1,r).
Next, using an importance sampling technique [8], [9] with

a proposal p.d.f. πn|n−1,r, a properly weighted set of particles
to represent p̃n|n,r , see also [5], is obtained by sampling x̃

(j)
n,r

∼ πn|n−1,r(xn) for j = 1, . . . , J and then computing the
corresponding updated weights

w̃(j)
n,r ∝

 ∏
u∈N̄(r)

p(yn,u|x̃(j)
n,r)

 ∑J
l=1 w

(l)
n−1,r p(x̃

(j)
n,r|x(l)

n−1,r)

πn|n−1,r(x̃
(j)
n,r)

(6)
for j = 1, . . . , J , where the proportionality constant in (6) is
such that

∑J
j=1 w̃

(j)
n,r = 1. LetN (x|m,P) denote a multivari-

ate Gaussian p.d.f. with mean m and covariance matrix P. A
common choice for the proposal p.d.f., based on an Extended
Kalman Filter (EKF) technique [10], is to make

πn|n−1,r( xn ) = N (xn| mn|n−1,r,Σn|n−1,r) (7)

where

mn|n−1,r = fn−1(x̂n−1|n−1,r) (8)

Σn|n−1,r = F̃n−1 Pn−1|n−1,r F̃T
n−1

+ Gn−1Qn−1G
T
n−1 (9)

with x̂n−1|n−1,r and Pn−1|n−1,r being respectively the con-
ditional mean and the conditional covariance matrix as-
sociated with pn−1|n−1,r at node r at instant n − 1, and
F̃n−1, as in the standard EKF algorithm when fn−1(x) =
[fn−1,1(x) . . . fn−1,N (x)]T , being the N × N matrix whose
(i, j) element is the partial derivative ∂fn−1,i(x)

∂xj
evaluated at

x = x̂n−1|n−1,r.

4.2. Hybrid Gaussian/SMC Adapt Step

As shown in [5], the marginal particle filter Adapt step as
described in Sec. 4.1 is asymptotically optimal as J → ∞,
but it has the inconvenience of complexity O(J2). To reduce
the computational complexity to O(J), we propose an alterna-
tive, suboptimal solution that is not limited to, but particularly
useful when fn(xn) = Fn xn, where Fn is a known N × N
matrix for all n ≥ 0. Under the latter condition, we define the
approximate p.d.f. p̂n−1|n−1,r(xn−1) at instant n− 1 at node
r by N (xn−1|x̂n−1|n−1,r,Pn−1|n−1,r) such that

p̂n|n−1,r(xn) =

∫
p(xn|xn−1)p̂n−1|n−1,r( xn−1 )dxn−1

= N (xn| m̂n|n−1,r, Σ̂n|n−1,r)
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with m̂n|n−1,r and Σ̂n|n−1,r given by Eqs. (8) and (9) replac-
ing, however, fn−1(x̂n−1|n−1,r) with Fn−1 x̂n−1|n−1,r and
F̃n−1 with Fn−1. In the sequel, for j = 1, . . . , J

1. Draw x̃
(j)
n|n,r ∼ p̂n|n−1,r(xn).

2. Update the weights by making

w̃(j)
n,r ∝

 ∏
u∈N̄(r)

p(yn,u|x̃(j)
n,r)

 .
4.3. Combine Step

In order to merge the local posterior p.d.f’s in the Combine
step, a parametric approximation to p̃n|n,r is needed at each
node r at instant n. The simplest approximation is to use
the particle set {x̃(j)

n|n,r} with respective weights {w̃(j)
n|n,r} to

compute the sample mean vector and the sample covariance
matrix at node r and instant n given by x̃n|n,r =

∑J
l=1 w̃

(l)
n,r

x̃
(l)
n|n,r and P̃n|n,r =

∑J
l=1 w̃

(l)
n,r (x

(l)
n|n,r − x̃n|n,r) (x

(l)
n|n,r −

x̃n|n,r)T .
In the sequel, we approximate p̃n|n,r(xn) ≈ N (xn| x̃n|n, r,

P̃n|n, r). Under the Gaussian approximation, the merged p.d.f.
pn|n,r on the left-hand side of the KL fusion rule in (5) is also
Gaussian, see [4] and [11], with fused covariance matrix and
mean vector given by

(Pn|n,r)−1 =
∑

u∈N̄(r)

ar,u(P̃n|n,u)−1

x̂n|n,r = Pn|n,r

 ∑
u∈N̄(r)

ar,u (P̃n|n,u)−1 x̃n|n,u

 .
Finally, node r resamples x

(j)
n r ∼ N (xn| x̂n|n, r, Pn|n, r) and

resets w(j)
n,r = 1/J for j = 1, 2, . . . , J .

5. MARGINAL RNDEX DIFFUSION FILTER

The alternative Random Exchange (RndEx) diffusion method-
ology assumes that, at instant n − 1, a given network node
s, stores a posterior p.d.f. p(xn−1|ỹ0:n−1,s) where ỹ0:n−1,s

denotes a random subset of y0:n−1,1:R. The network then ex-
ecutes the fully-distributed asynchronous random exchange
(RndEx) protocol described in detail in [6] and [7], after which
the p.d.f. p(xn−1|ỹ0:n−1,s) (or rather a parametric represen-
tation thereof) ends up at another random node r, which is
not necessarily in the neighborhood of s. Next, at instant n,
node r updates its new stored p.d.f. using the locally available
observations in the vector ỹn,r that collects the measurements

{yn,u} for all u ∈ N̄(r), i.e. node r computes at instant n

p(xn|ỹ0:n−1,s) =

∫
<N

[ p(xn|xn−1)

× p(xn−1|ỹ0:n−1,s) ] dxn−1

p(xn|ỹn,r, ỹ0:n−1,s) ∝

 ∏
u∈N̄(r)

p(yn,u|xn)


× p(xn|ỹ0:n−1,s).

We redefine now ỹ0:n,r =
[
ỹT

0:n−1,s ỹT
n,r

]T
. As a given p.d.f.

travels through a random path of nodes {l0, l1, . . . , ln} over
the network between instants zero and n, node ln at instant
n, after local data assimilation, stores then the posterior p.d.f.
p(xn|ỹ0,l0 ỹ1,l1 . . . ỹn,ln), thus enabling data diffusion.

If p(xn−1|ỹ0:n−1,s) is represented at instant n − 1 by
a set of weighted samples {x(j)

n−1,s}, j = 1, . . . , J , with

weights {w(j)
n−1,s}, we may approximate p(xn−1|ỹ0:n−1,s) by

N (xn−1| x̂n−1|n−1, s, Pn−1|n−1, s) where x̂n−1|n−1, s and
Pn−1|n−1, s are respectively the sample mean and sample
covariance matrix computed from the weighted set {(w(j)

n−1,s,

x
(j)
n−1,s)}. Upon receiving x̂n−1|n−1, s and Pn−1|n−1, s from

node s during the random exchange step, node r at instant
n builds a new Monte Carlo representation for p(xn|ỹ0:n,r)
using the following marginal PF algorithm:

For j = 1, . . . , J

1. Resample x
(j)
n−1,s ∼ N (xn−1| x̂n−1|n−1 s,Pn−1|n−1, s)

and set w(j)
n−1,s = 1

J .

2. Sample x
(j)
n,r ∼ πn|n−1,s(xn), where πn|n−1,s(xn) is

defined as in Eqs. (7), (8) and (9) replacing x̂n−1|n−1, r

and Pn−1|n−1, r with x̂n−1|n−1, s and Pn−1|n−1, s.

3. Update the sample weights as

w(j)
n,r ∝

 ∏
u∈N̄(r)

p(yn,u|x̃(j)
n,r)


×

∑J
l=1 w

(l)
n−1,s p(x̃

(j)
n,r|x(l)

n−1,s)

πn|n−1,s(x̃
(j)
n,r)

. (10)

Again, to eliminate the quadratic complexity of the marginal
PF algorithm in the number of particles, a simplified hybrid
Gaussian/SMC implementation as in Sec. 4.2 can be used,
especially when the state model is linear.
Remark Note that the smoothing RndEx diffusion PF in
[6], at the end of the random node path {l0, l1, . . . , ln},
builds in theory at node ln a Monte Carlo representation of
p(x0:n|ỹ0,l0 ỹ1,l1 . . . ỹn,ln), rather than p(xn|ỹ0,l0 ỹ1,l1 . . .
ỹn,ln) directly, and, therefore, is both algorithmically and con-
ceptually different from the marginal RndEx PF formulated in
this paper.
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6. SIMULATION EXAMPLE

As an illustrative example, we track the sequence of hidden
state vectors {xn} that collect the positions and velocities of a
moving target’s centroid in a two-dimensional (2-D) surveil-
lance space of size approximately 120 × 120 meters (m). The
random sequence {xn} evolves in time according to the linear,
white-noise acceleration model

xn+1 = F xn + un

described in [12], where the block-diagonal matrices F and Q
are given by F = diag(F̃, F̃) and Q = diag(Q̃, Q̃) with F̃ =[
1 T
0 1

]
, Q̃ = σ2

accel

[
T 3/3 T 2/2
T 2/2 T

]
, and T is the sampling

period. Detailed parameters for the simulated scenario are
provided in [6].

A partially connected network of 25 received-signal-
strength (RSS) sensors records at each instant n the measure-
ments {yn,r} in dBm at each network location r such that
[13]

yn,r = P0 − 10ζr log10

(
||H xn − xr||

d0

)
︸ ︷︷ ︸

hn,r(xn )

+vn,r (11)

where xr is the (known) r-th sensor position in the 2-D surveil-
lance space, ||.|| is the Euclidean norm in <2; (P0, d0, ζr) are
known model parameters (see [13] for details), and H is a
2 × 4 projection matrix such that H(1, 1) = H(2, 3) = 1 and
H(i, j) = 0 otherwise.

We ran marginal PF implementations respectively of the
optimal (centralized) network filter, the RndEx diffusion filter,
and the ATC diffusion filter. For the ATC diffusion filter
in particular, we also implemented an iterative version the
Combine step in Sec. 4.3 with 10 iterations. As discussed
in a different context in [14], the iterative version of Eq. (5)
converges, as the number of iterations go to infinity, to a fused
p.d.f. that minimizes over all possible p.d.f.’s p? the average
network KL divergence

∑R
u=1

[
1
R DKL(p? ||p̃n|n,u)

]
.

All marginal PFs in our simulations used a simplified hy-
brid Gaussian/SMC implementation with J = 1000 particles
at each Monte Carlo run. Fig. 1 shows the empirical root-
mean-square (RMS) position estimate error averaged over all
network nodes from instant zero up to instant 100 s obtained
from Monte Carlo simulations for each tested algorithm. Ta-
ble 1 on the other hand compares the evaluated algorithms
in terms of their processing and communication costs, which
were computed according to the methodology detailed in [15]

We see from Fig. 1 that all tested filters tracked the emitter
with small steady-state error. The ATC filter with an iterative
Combine step was the closest in performance to the optimal
centralized filter in this example, but, as shown in Table 1, its
associated internode communication cost in our simulations
was about one order of magnitude higher than those for the

0 20 40 60 80 100
0.5

1

2

4

E
rr
o
r[
m
]

Time[s]

Centralized MPF
RndEx-MPF
Iterative ATC MPF
Non-Iterative ATC MPF

Fig. 1. Evolution of the estimated position RMS error norm.

RndEx and the non-iterative ATC diffusion filters. The non-
iterative ATC filter, however, showed a slight improvement in
RMSE over the RndEx-MPF, with an internode communica-
tion cost that is only about twice as high as that of the latter.
Note that both non-iterative ATC-MPF and RndEx-MPF are
scalable with network size since their internode communica-
tion cost depends on the network degree only.

Table 1. Communication and processing performances.
Evaluated RX TX Duty
Algorithm Rate Rate Cycle

RndEx-MPF 148 B/s 132 B/s 2.7 %
Iterative ATC MPF 2.9 KB/s 604 B/s 2.8 %

Non-Iterative ATC MPF 317 B/s 64 B/s 2.4 %

7. CONCLUSIONS

We presented in this paper the general Bayesian formulation
of the fully distributed ATC and RndEx diffusion filters for
cooperative signal tracking over sensor networks. We then
derived novel marginal particle filter implementations of the
ATC and RndEx filter using a combination of sequential Monte
Carlo methods and Gaussian parametric approximations; alter-
natively, Gaussian sum approximations could also have been
used and are left for future work. In particular, using the
hybrid SMC/Gaussian approach, we managed to reduce the
complexity of the marginal PF from O(J2) to O(J), where
J is the number of particles. The proposed filters were tested
in a numerical example with simulated RSS sensor data. The
simulations show that, overall, all tested filters performed well
in terms of state estimation accuracy, but the non-iterative
marginal ATC particle filter offered the best compromise be-
tween internode communication cost and RMSE performance.
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