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ABSTRACT

This paper applies deep neural network (DNN) to source localiza-
tion in a shallow water environment because of its powerful model-
ing capability and the little dependence on the prior knowledge of
environmental parameters. The classical two-stage scheme is adopt-
ed, in which feature extraction and DNN analysis are independent
steps. It firstly extracts the input feature from the observed signal
received by underwater hydrophones. The eigenvectors associated
with the modal signal space are decomposed from the covariance
matrices of the data field at different frequencies, which are used as
the input feature of DNN. The time delay neural network (TDNN)
is exploited to model the long term feature representation and con-
struct the regression model. The output is the source range-depth es-
timate. Several experiments using simulation and experimental data
are conducted to evaluate the performance of the proposed method.
The results demonstrate the effectiveness and potential of DNN for
source localization. Particularly, experiments show that simulation
data can be merged to train a general model for experimental data
when lacking of sufficient training data in real-world environment.

Index Terms— Source localization, shallow water environment,
modal signal space, time delay neural network.

1. INTRODUCTION

Source localization in a shallow water environment has attracted a lot
of attention of many scholars in the past several decades. Matched
field processing (MFP) is a famous model based method for under-
water source detection and localization [1]–[9]. MFP calculates the
replicas using the propagation model, then the location, where the
modeled field best matches with the experimental field, is taken as
the source location estimation. MFP usually requires the accurate
information of environmental parameters to calculate the modeled
field. However, the environmental parameters are usually variant
and imprecise, which may lead to incorrect or inaccurate localiza-
tion results.

To reduce the dependence on the environmental information,
many data-based localization methods are presented. The ar-
ray/waveguide invariant is proposed for robust source-range estima-
tion [10]–[12]. Machine learning is a famous data-driven technique,
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which has been introduced to source localization [13]–[17]. These
methods can localize source successfully by taking the source lo-
calization as a classification or regression task, however, they are
commonly based on conventional classifiers or shallow feed-forward
neural networks (FNNs) [14]–[18]. Although the convolutional neu-
ral network (CNN) is taken for passive acoustic ranging [19], it is
designed for the near-field scenario using a single sensor, so that the
time delay between the direct and indirect sound propagation path
can be measured. To our best knowledge, few methods are reported
for source localization based on deep neural network (DNN) using
underwater multi-sensor arrays for far-field scenario. Compared
to shallow FNNs, DNN [20, 21] is advantageous to represent the
complex nonlinear relationship. In this paper, we take advantage
of DNN to estimate the wide-band source location using a vertical
linear array (VLA) in a shallow water environment.

The proposed method adopts the two-stage scheme that incor-
porates feature extraction and DNN analysis. The eigenvectors asso-
ciated with the modal signal space decomposed from the covariance
matrices of the data field at different frequencies are taken as the in-
put feature of DNN. Then, the estimates of range and depth are given
by regression network. Since the time delay neural network (TDNN)
[22] ic capable of modeling the temporal dynamics in sound signal,
it is used as the basic network architecture.

In contrast to previous methods, there are two major characteris-
tics for the proposed method. First, DNN directly learns the mapping
relationship from the original data, rather than construct the acous-
tic model in advance. Second, the simulation data is proven to be a
feasible alternative for our method in real application, where train-
ing data collection is very costly. It enables sufficient training data
to guarantee the performance of the trained model. Our experiments
have shown the model trained by simulation data can also achieve a
good performance on real experimental data.

2. SIGNAL MODEL

Let’s consider a single wide-band sound source impinges on a VLA
of K sensors in a far-field scenario. The source location is denoted
as a two-dimensional vector, (rs, zs). Using the matrix notation, the
pressure field received by the sensors is described as [9]

P = HS + N, (1)

where S ∈ CM with Sm(rs, zs) = a(2π/kmrs)
1/2Ψm(zs)e

jkmrs ,
a denotes the complex Gaussian random amplitude of the source,
M (M < K) denotes the mode number in the water column (higher
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modes are treated as noise), k2
m is the eigenvalue associated with the

mth mode, N ∈ CK denotes the additive noise, and H ∈ CK×M

with Hm,k = Ψm(zk). P = [P1, . . . , PK ]T ∈ CK , where (·)T
denotes the transpose operation and the pressure field at depth zk
due to a source at (rs, zs) is represented as

Pk =

M∑
m=1

Hm,kSm(rs, zs). (2)

3. PROPOSED METHOD

The proposed method comprises two modules: 1) feature extraction
and 2) DNN analysis. The feature extraction module extracts the
eigenvectors from the observed acoustic data. The DNN analysis
module constructs the one-to-one mapping between the eigenvectors
and the source locations. Feature extraction and DNN analysis are
mutually independent.

3.1. Feature extraction

Based on the aforementioned signal model, the covariance matrix at
a single frequency over D snapshots is expressed as

R(f) =
1

D

D∑
d=1

Pd(f)P+
d (f),

= HRS(f)H+ + RN (f),

(3)

where f denotes the frequency, (·)+ denotes the Hermitian trans-
pose, and RS(f) and RN (f) are the covariance matrices of the sig-
nal and noise. Applying eigenvalue decomposition (EVD) to R(f),

R(f) = ΛfΣfΛ
+
f

= ΛS
fΣ

S
fΛ

S+
f +ΛN

f ΣN
f ΛN+

f ,
(4)

where the eigenvectors and eigenvalues are obtained as Λf =
[ef,1, . . . , ef,K ] ∈ CK×K and Σf = diag[λf,1, . . . , λf,K ],
where the eigenvalues are sorted in descending order. ΣS

f and

ΛS
f = [efi,1, . . . , efi,M′ ] ∈ CK×M

′
are eigenvalues and eigen-

vectors corresponding to the modal signal space and ΣN
f and ΛN

f

corresponds to the modal noise space.
Comparing (3) with (4), it can be seen that the M dominan-

t eigenvectors of the covariance matrix span the same space as the
columns of H if the modes are sampled sufficiently. The eigenvec-
tors associated with larger eigenvalues span the modal signal space
while the remaining eigenvectors span the modal noise space. Note
that the eigenvectors of the modal signal space may not correspond
to the lowest-order normal modes exactly (M

′
≤ M ), if some mode

amplitude functions are not activated. The eigenvectors with rela-
tive larger eigenvalues (ΛS

f ), which are considered to be the main
feature of the propagating modes of an assumed source location, are
used as the input feature of DNN. The remaining eigenvectors are
disregarded to suppress the noise.

3.2. DNN analysis

TDNN [22] is selected to construct the functional transformation be-
tween the eigenvectors and the source locations, because it has the
capability of modeling the temporal dynamics of the feature repre-
sentation. The architecture of TDNN with one hidden layer is shown
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Fig. 1. Architecture of TDNN. (a) TDNN with one hidden layer.
(b) A fully-connected architecture. Connections with the same color
(red, blue, or green) share the same weights.

in Fig. 1(a). The figure shows the current estimate is not only de-
termined by current input feature but also its adjacent features. The
temporal context information is collected by each TDNN unit and
the higher layers have the ability to learn wider temporal relation-
ship. The dependencies across layers are localized in time. For the
specific TDNN shown in Fig. 1, units from t− 1 to t+1 are spliced
at the input layer and the hidden layer. The output of the tth moment
depends on t − 2 to t + 2 frames in terms of the whole framework.
The output of each unit at all layers is obtained by computing the
weighted sum of its inputs and passing this sum through a nonlinear
function. Such connection is unfolded as Fig. 1(b), which can be
viewed as a fully-connected architecture.

The network parameters are updated by minimizing the mean
square error (MSE) objective function, given by

E =
1

L

L∑
l=1

[
(rl − r

′
l)

2 + (zl − z
′
l )

2
]
. (5)

where (r
′
l , z

′
l ) and (rl, zl) denote the reference and estimated range

and depth respectively and L denotes the sample number of each
batch. Note that the source locations are expressed by range in kilo-
meter and depth in meter.
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Fig. 2. Block diagram of the proposed method.
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3.3. Implementation

Since the extracted eigenvectors are complex values, they cannot be
directly addressed by real-valued neural network. Here, the complex
values are considered to be two-dimensional real values. The real
and imaginary part of the eigenvectors at different frequencies are
concatenated as the input vector x,

x ,
∪
i

∪
m

[
R(efi,m),ℑ(efi,m)

]
, i = 1, . . . , F, m = 1, . . . ,M

′
,

(6)
where i denotes the frequency index. The block diagram of the pro-
posed method is shown in Fig. 2.
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Fig. 3. Schematic diagram of the simulated acoustic environmental
model.

4. EVALUATIONS

4.1. Simulation setup

4.1.1. Acoustic environmental model

The simulations were conducted to evaluate the performance of the
proposed method. The schematic diagram of the simulated envi-
ronment was illustrated in Fig. 3. The VLA consisted of 30 hy-
drophones spanning 30 − 60 m depth with uniform inter-sensor s-
pacing 1 m. The depths of water and the sediment layer were 100
m and 10m. The sound speed increased from 1527 m/s at the top of
the water column to 1529 m/s at the bottom.

4.1.2. Data description

Acoustic data was simulated using KRAKEN. The bandwidth of
simulation signal was [50, 1000] Hz and the sampling rate was 6000
Hz. The sources incorporated near-surface vessels and underwater
targets with source level (SL) 120 dB (at 1000 Hz). All sources
moved away from the array ranging from 10 to 28.5 km, while the
near-surface vessels with depth from 1.5 to 8.5 m and underwater
targets form 28 to 35 m. The white Gaussian noise was used as
the ambient noise, which was artificially added to the source signal.
Both SL and noise level (NL) were attenuated by −6 dB/Oct. The
signal-to-noise rate (SNR) of a single hydrophone at different ranges
can be approximately calculated by SL and NL as

SNR(f) (dB) = SL(f)− 60− 10 log10(
r

r0
)−NL(f), (7)

where r is the current source range and r0 = 1000 m is the reference
range (r ≥ r0). The transmission loss decreases with depth going
deeper.

4.1.3. Parameters for feature extraction

The signal transformed to frequency domain by operating fast Fouri-
er transformation (FFT). The frame length was about 0.6827 s. The
bandwidth used for feature extraction was set to [100, 300] Hz. Ten
eigenvectors at sixteen frequency bins were extracted as the input
feature, thus the feature per frame included 9600 (30×10×16×2)
dimension.

4.1.4. Parameters for TDNN

The configuration of TDNN was that of 8 layers (one input layer +
six hidden layers + one output layer) with 1024 hidden nodes. The
units were spliced from t − 1 to t + 1 at the input layer and the
second hidden layer. No frame was spliced at the first, and third to
fifth hidden layer. Current output was determined by the inputs from
t− 2 to t+ 2 (totally 5 frames) in terms of the whole framework.

The simulation data were divided into two parts: training set
and test set. There were totally 1, 582, 200 training samples and
158, 220 test samples, which were mutually different. The rectified
linear units (ReLU), f(x) = max(0, x), was used as the activa-
tion function [23]. The Kaldi [24] toolkit was adopted for TDNN
training. TDNN was optimized using the back propagation (BP) al-
gorithm [25] with stochastic gradient descent (SGD) in a mini-batch
mode [26]. The initial learning rate was 0.001 and the batch for SGD
was 512.

4.1.5. Parameters for MFP

The conventional MFP [7] was taken as the competing method. The
grid resolution for calculating the modeled field was chosen to 10
m in range and 0.5 m in depth, which was set the same for search
grid. For the sake of fairness, MFP made use of 5 frames (0.6827 s
per frame) to calculate the final estimator output and the bandwidth
used was [100, 300] Hz. Global maximum in the ambiguity surface
indicated the best estimate of source location.

4.2. Simulation results

The simulation investigated the effectiveness of the proposed method
under various NLs. The NL were set to 25, 45, and 65 dB (at 1000
Hz). There were three models respectively trained using near-surface
vessels and underwater targets with NL=25, 45, and 65 dB, then the
tested sources with different NLs were decoded by the corresponding
model trained for the coincident NLs. For example, tested source
under NL=25 dB was decoded by the model trained for NL=25 dB.
The objective evaluation metrics used were the mean absolute error
(MAE) and the mean relative error (MRE),

MAE =
1

Q

Q∑
q=1

|xq − x
′
q|, (8)

MRE =
1

Q

Q∑
q=1

∣∣∣xq − x
′
q

x′
q

∣∣∣× 100%, (9)

where x represents the estimation value and x
′

represents the refer-
ence value. Q is the sample number.
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Table 1. MAE and MRE comparison under different NLs.
Method NL (dB) Depth (m) Range (km)

TDNN
25 0.34 0.04 (0.2%)
45 0.39 0.14 (0.7%)
65 0.55 0.18 (1.0%)

MFP
25 1.13 0.07 (0.3%)
45 1.31 0.17 (0.7%)
65 11.3 8.02 (43.7%)

The MAE of range and depth and MRE of range (in the brackets)
are averaged over all tested sources (including near-surface vessels
and underwater targets). The results of the proposed method (called
TDNN) and MFP are shown in Table 1, one finds that MAE and M-
RE of two methods consistently achieve a relative low error when
NL=25 and 45 dB. Nevertheless, the performance degrades when
NL increases, e.g. NL=65 dB, particularly serious for MFP. It indi-
cates that, for the proposed method, the eigenvectors are disrupted by
environmental noise, so the features can not well represent the prop-
agating modes of the source. For MFP, it can estimate depth and
range of sources accurately under favorable environments, howev-
er, the modeled field fails to be matched with the experimental field
when SNR is low. Overall, TDNN outperforms MFP in all tested
conditions, especially when noise becomes serious, which reveals
that the proposed method can achieve a better performance under
adverse environment. Besides, it should be noted that the proposed
method can give the reliable estimates as long as the range and depth
of the test data are within that of the training data.
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Fig. 4. Sound speed profile for the real environment.

4.3. Experimental results

The simulations showed that the proposed method and MFP can es-
timate source location when environmental parameters were certain.
In fact, the environmental information was not always precise. The
real environmental data collected in March 1999 in the Yellow Sea
were used for testing. The data were recorded by a VLA with 16-
element hydrophones spanning 0.5−30.5 m depth with inter-sensor
spacing 2 m. The surface vessel traveled toward the sensors from
11.5 km away from the sensor and lasted about 15 minutes. The
sound speed profile (SSP) measured in the experiment is shown in
Fig. 4, where the water depth was about 35.5 m. The hydrophone
sampling rate was 12 kHz. The bandwidth used for feature extrac-
tion and MFP was [100, 150] Hz. The configuration of TDNN is

Fig. 5. Source ranging using experimental data. The left figure
shows the results of TDNN and the right shows the results of MFP.

identical to that described in Sec 4.1.4.

Table 2. MAE and MRE of range estimation for experimental data.
Method MAE MRE
TDNN 0.41 5.3%
MFP 0.52 6.4%

For DNN method, since we did not have adequate data that
recorded in the same environment as training set, the data were sim-
ulated as training data. Simulation data under various NLs were gen-
erated in order to cover the real case because NL was unknown for
real data. The training set included 1, 107, 000 samples. As only
range varies with time, the range estimates are shown in Fig. 5.
From this figure, we can observe that both TDNN and MFP can
localize the source accurately in general. The MAE and MRE be-
tween the estimated range and GPS range are summarized in Table
2, the results show that TDNN achieves a better accuracy than MF-
P. It should be mentioned that the proposed method may achieve a
better performance if there are another few experimental data in the
same environment for training.

From this experiment, the results demonstrate that simulation
data is helpful when training data are insufficient. The model trained
by simulation data can also achieve a fairly good performance on
experimental data.

5. CONCLUSIONS

This paper proposes a novel approach to localize source in a shallow
water environment by utilizing DNN. In summary, our contribution-
s are two-fold: (i) We applied TDNN to source localization task,
and the experimental results show the effectiveness of the proposed
method for source localization. (ii) Simulation data are available
for source localization when laking of real-environment training da-
ta. Simulation data in close environments can be merged to train a
general model. The general model can still achieve a fairly good
performance on experimental data, as long as the tested condition
is covered by that of simulation data. They promotes the proposed
method to be deployed in a wider range of situations in real-world
environment.
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