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ABSTRACT

Calibration of a typical radio interferometric array yields thousands

of parameters as solutions. These solutions contain valuable infor-

mation about the systematic errors in the data (ionosphere and beam

shape). This information could be reused in calibration to improve

the accuracy and also can be fed into imaging to improve the fidelity.

We propose a distributed optimization strategy to construct models

for the systematic errors in the data using the calibration solutions.

We formulate this as an elastic net regularized distributed optimiza-

tion problem which we solve using the alternating direction method

of multipliers (ADMM) algorithm. We give simulation results to

show the feasibility of the proposed distributed model construction

scheme.

Index Terms— Calibration, Radio interferometry, Array pro-

cessing, Ionosphere, Beam model

1. INTRODUCTION

Radio interferometric observations are almost always affected by

systematic errors. During calibration, these systematic errors are

estimated along many directions in the sky using compact celestial

sources as guide beacons. In addition, the corrupting signals are also

subtracted from the data to reveal weaker signals of interest. Large

volumes of data need to be calibrated to deliver the science goals

of modern radio astronomy. As a secondary outcome of calibration,

hundreds of thousands of parameters are obtained as calibration so-

lutions and are stored as metadata.

The main sources of systematic errors in radio interferometric

data are the ionosphere and the receiver beam shape. The effect of

ionosphere is mostly represented as a phase (or total electron con-

tent) screen in radio astronomy [1, 2] as well as in other applications

such as space weather [3]. The calibration solutions along the direc-

tions of compact sources are used to build phase screens [1, 2, 4] and

this is further improved to operate in real time [5]. Faraday rotation

of incoming radiation is an additional complication caused by the

ionosphere (that can be seen with dual polarized antennae) and ex-

ternal information such as GNSS (global navigation satellite system)

satellites are used to model this [6, 7, 8]. It is noteworthy that phase

screen models have limited accuracy for science goals that demand

high dynamic ranges [9].

The receiver beam shape has traditionally been estimated using

holographic techniques [10, 11, 12]. Recent surge in the use of un-

manned areal vehicles (drones) have enabled their use in beam shape

estimation as well [13, 14]. It is also possible to use calibration so-

lutions to obtain beam models [15]. Once accurate models for the
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ionosphere and the beam shape have been obtained, image fidelity

can be improved by incorporating such models into the imaging pro-

cess [16, 17].

In this paper, we propose a method to construct a unified model

for the ionosphere and the beam shape. The novelty (relation to prior

work) is as follows: (i) We extend the scalar models (single polariza-

tion) [1, 2, 5, 15] to handle data taken with dual polarized receivers.

Our model incorporates the refraction and the Faraday rotation due

to the ionosphere into one. (ii) We create a unified model for both the

ionosphere and the beam shape and can be directly used by imaging

algorithms [16, 17]. We enforce elastic net regularization [18] during

model creation. The power constraint comes naturally because the

received signals have finite power [15]. The sparseness is more sub-

tle, but arises because the relative difference in the ionosphere seen

by receivers close together on Earth is small [19, 20, 21]. There-

fore, sparseness minimizes overfitting, for example when there is no

differential Faraday rotation between stations. (iii) We propose a dis-

tributed optimization scheme using the alternating direction method

of multipliers (ADMM) [22]. This scheme matches nicely with the

distributed calibration schemes in use [23, 24], and also makes our

algorithm computationally efficient.

The rest of the paper is organized as follows: We give a brief

introduction to radio interferometric calibration and models for sys-

tematic errors in section 2. We propose a distributed model construc-

tion method based on consensus optimization in section 3. We show

the feasibility of the proposed method in section 4 using simulated

data before drawing our conclusions in section 5. Notation: Matri-

ces and vectors are denoted by bold upper and lower case letters as J

and v, respectively. The transpose and the Hermitian transpose are

given by (·)T and (·)H , respectively. The matrix Frobenius norm is

given by ‖ · ‖ and the l1 norm by ‖ · ‖1. The set of real and complex

numbers are denoted by R and C, respectively. The identity matrix

(size N ×N ) is given by IN .

2. RADIO INTERFEROMETRIC DATA MODEL

We consider an array with N stations and the observed data Vpqf ∈
C

2×2 at the baseline formed by stations p and q at frequency f is

given by [25]

Vpqf =
K∑

k=1

JpkfCpqkfJ
H
qkf +N. (1)

The data consists of the known signals from K sources in the sky

Cpqkf ∈ C
2×2 p, q ∈ [1, N ], k ∈ [1,K] corrupted by the sys-

tematic errors Jpkf ,Jqkf ∈ C
2×2. The systematic errors represent

the cumulative effect of the ionosphere and the beam shape and also

the receiver electronics. We consider the data (taken at F distinct
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frequencies) to be stored across a network of computers. Using dis-

tributed calibration [23], we estimate the systematic errors Jpkf for

all p, k and f and we also store the solutions across the network of

computers.

Provided that the K directions are spread across the full field

of view, our objective is to create a model for the systematic errors

across the field of view of each station. We use G basis functions

to cover the field of view and these basis functions represent the

variation of the systematic errors both spatially as well as with fre-

quency. Given that there are F × K solutions per each station, we

assume G ≪ F × K. Let the k-th direction have spatial coor-

dinates (αk, βk), and at frequency f , let the i-th basis function be

φi(αk, βk, f), i ∈ [1, G].
Based on the model X (∈ C

2N×2G) and the basis functions eval-

uated along the k-th direction at frequency f , Φαkβkf (∈ C
2G×2),

we can represent systematic errors for all N stations along the k-th

direction Jkf (∈ C
2N×2) as

Jkf = XΦαkβkf (2)

where

X
△
=




X11 X12 . . . X1G

X21 X22 . . . X2G

. . . . . . . . . . . .
XN1 XN2 . . . XNG


 , (3)

Φαkβkf
△
=




φ1(αk, βk, f)
φ2(αk, βk, f)

. . .
φG(αk, βk, f)


⊗ I2, Jkf

△
=




J1kf

J2kf

. . .
JNkf


 .

Each Xpi (∈ C
2×2) p ∈ [1, N ] i ∈ [1, G] in X represents the

contribution of the i-th basis function towards the model of the sys-

tematic errors of the p-th station. Note that each Xpi is independent

of spatial coordinates or frequency.

It seems straightforward to estimate X by augmenting many cal-

ibration solutions Jkf and inverting (2). However, the solutions at-

tainable for (1) are JkfUkf where Ukf (∈ C
2×2) is an unknown

unitary matrix UkfU
H
kf = I. The reason for this unitary ambigu-

ity is that Cpqkf in (1) is scalar diagonal for most celestial sources

(= γI2, γ ∈ C). Notably, the unitary ambiguity will be different for

each direction k and for each frequency f . Therefore, we cannot use

(2) directly to find X.

3. DISTRIBUTED MODEL CONSTRUCTION

In order to overcome the inherent unitary ambiguity, we reformulate

our problem as follows. Taking the product

JpkfCpqkfJ
H
qkf = ApXΦαkβkf C̃pqkf (AqXΦαkβkf )

H
(4)

using calibration solutions Jpkf and Jqkf , we see that the unitary

ambiguity cancels out because it is the same for both Jpkf and Jqkf

and because Cpqkf is diagonal. In (4), Ap (∈ R
2×2N ) is a matrix

of zeros except at the p-th 2× 2 block it is I2,

Ap
△
= [0 0 . . . I2 . . .0] (5)

(and Aq likewise). The model for the p-th station is given by ApX.

The (updated) sky contribution C̃pqkf used in constructing the

model need not be equal to Cpqkf which is used in calibration. Both

C̃pqkf and Cpqkf are almost always diagonal matrices (because the

sky signal is intrinsically unpolarized). We define a cost function as

h(X)
△
=
∑

pqkf

‖JpkfCpqkfJ
H
qkf (6)

−ApXΦαkβkf C̃pqkf (AqXΦαkβkf )
H ‖2

where the inclusion of C̃pqkf and Cpqkf in the cost function acts as

a weighting, i.e., giving larger weights to solutions along the direc-

tions with large intensities, and therefore with higher signal to noise

ratios. Also different k-s will have different fluxes, not all normal-

ized in the input model, so this also acts as a normalization across all

directions in the sky.

Let the data be partitioned into different frequency subsets and

let the j-th partition contain frequencies given by the set Fj . Each

Fj is assumed to represent the data stored in one compute node. We

separate the summation in (6) as

h(X) =
∑

j

hj(X) (7)

where

hj(X)=
∑

f∈Fj

∑

pqk

‖JpkfCpqkfJ
H
qkf (8)

−ApXΦαkβkf C̃pqkf (AqXΦαkβkf )
H ‖2

correspond to the cost function local to the j-th compute node (
∑

j

implies summing over all compute nodes’ cost functions).

The model is constructed by minimizing (6) or (7) with elastic

net regularization [18]

X = argmin
X

∑

j

hj(X) + λ‖X‖2 + µ‖X‖1 (9)

where λ, µ ∈ R
+. Solving (9) directly is not tractable and noting

that each hj(X) is calculated on different compute nodes, we rede-

fine (9) as a consensus problem [22]

X1,X2, . . . ,Z = argmin
X1,X2,...,Z

∑

j

hj(Xj) + λ‖Z‖2 + µ‖Z‖1 (10)

subject to Xj = Z ∀ j, and X1,X2, . . . ,Z ∈ C
2N×2G.

The augmented Lagrangian for solving (10) using ADMM is

L(X1,X2, . . . ,Z,Y1,Y2, . . .) (11)

=
∑

j

hj(Xj) + ‖YH
j (Xj − Z)‖+

ρ

2
‖Xj − Z‖2

+λ‖Z‖2 + µ‖Z‖1

where ρ ∈ R
+ is the penalty parameter and Yj ∈ C

2N×2G is the

Lagrange multiplier local to compute node j.

The ADMM iterations for solving (10) are (using n = 1, 2, . . .
superscript for iteration number)

X
n+1

j = argmin
Xj

L(Xj ,Z
n,Yn

j ) (12)

Z
n+1 = argmin

Z

L(Xn+1

1 ,Xn+1

2 , . . . ,Z,Yn
1 ,Y

n
2 , . . .) (13)

Y
n+1

j = Y
n
j + ρ(Xn+1

j − Z
n+1). (14)
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Steps (12) and (14) are performed in a distributed manner at each

compute node and the intermediate step (13) is performed at the fu-

sion center. There is no closed form solution for (12) and we use

the Riemannian trust region method [26, 27] to find a solution. The

required gradient and Hessian operators are given in the appendix.

A solution for (13) is obtained in closed form as

Z = Ψ 2µ
2λ+

∑

j′
ρ

(
1

2λ+
∑

j′
ρ

∑

j

(Yj + ρXj)

)
(15)

where Ψ(·) is the (matrix) soft threshold operator, its scalar version

being Ψλ(x) = sign(x)max(|x| − λ, 0).

4. SIMULATIONS

We simulate an array with N = 16 stations, collecting data at F =
10 frequencies in the range [60, 180] MHz. Note that F can be many

hundreds in real observations. The sky consists of K = 60 sources,

spread across a field of view of 10 degrees in diameter. The beam

shapes of each N stations are randomly generated Gaussians, with

random pointing centers and footprints. The width of the beams are

varied according to 1/f2. The source intensities are attenuated ac-

cording to the average beam shape. As seen in Fig. 1, the sources

at the center have higher intensities than at the edge of the field of

view. To simulate the effect of the ionosphere, each beam shape

Fig. 1. Sky model spread across a field of view of 10 degrees in

diameter. The blue circles are scaled according to the intensity of

each source.

is multiplied by a complex number exp (a1α/f + a2β/f) where

(α, β) are spatial coordinates and a1, a2 are drawn from U(−5, 5).
Finally, each scalar beam shape is multiplied by a randomly gener-

ated rotation matrix ∈ C
2×2 to simulate the effect of Faraday rota-

tion (rotation angle scales as 1/f2). Using this compound model,

we calculate the calibration solutions Jkf and multiply them with a

random unitary matrix ∈ C
2×2. We also add noise (a random matrix

∈ C
2N×2) to Jkf with a norm that is 5% of ‖Jkf‖.

The basis functions Φαkβkf in (3) are constructed by using 16
spherical harmonics (for spatial dependence) multiplied with 5 Bern-

stein bases (for frequency dependence). Therefore, G = 16 × 5 =
80 ≪ F ×K = 10×60 = 600. We use 50 ADMM iterations, with

penalty ρ = 10 and regularization parameters λ = 40 and µ = 10.

We show the primal (‖Xn
j −Z

n‖) and dual (‖Zn −Z
n−1‖) residu-

als in Fig. 2. We see that the primal residual is much higher, mainly

because of the frequency dependence (Bernstein bases) not being

representative enough.

Fig. 2. Variation of primal and dual residuals with ADMM iteration.

We compare the solution obtained by (10) with the linear esti-

mate obtained by solving (2). Note that the linear estimate is always

inferior to the solution obtained by (10) because of the unitary am-

biguities. We show the systematic error models constructed for one

station in Figs. 3 and 4, showing the real and imaginary parts of

the systematic errors for one correlation (XX). As expected, the con-

sensus optimization based solution (with and without regularization)

gives better results than the linear estimate.

Fig. 3. XX systematic error real part across the full field of view: (a)

ground truth (b) linear estimate (c) consensus without regularization

(d) consensus with regularization.

In order to study the effect of elastic net regularization, we calcu-

late the ground truth value of systematic errors Jkf and the estimated

systematic errors based on the constructed model Ĵkf and find the

difference (subject to a unitary ambiguity U [28]) as ‖Jkf−ĴkfU‖.

We call this model construction error. We evaluate the model con-

struction error on a spatial grid of 30 × 30 directions (covering the

full field of view) and average this over all N stations. The model

construction error surface over the full field of view at f = 100 MHz

is shown in Fig. 5. For comparison, we have also shown the average

‖Jkf‖ in Fig. 5 (a). We see the improvement due to elastic net reg-

ularization by comparing Fig. 5 (c) (no regularization) with Fig. 5

(d). The number of nonzero elements in the model X in the case of

Fig. 5 (c) is 2N × 2G = 5120 while with elastic net regularization,

this value becomes 4131.
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Fig. 4. XX systematic error imaginary part across the full field of

view: (a) ground truth (b) linear estimate (c) consensus without reg-

ularization (d) consensus with regularization.

Fig. 5. Average model construction error across the full field of view:

(a) norm of Jkf (b) linear estimate (c) consensus without regulariza-

tion (d) consensus with regularization.

The variation of the average model construction error (over the

full field of view) with frequency is shown in Fig. 6. We can clearly

see the improvement due to consensus optimization and elastic net

regularization in Fig. 6.

5. CONCLUSIONS

We have formulated the construction of models for systematic errors

in radio interferometric data as a distributed optimization problem.

We solve this problem with the use of the ADMM algorithm and with

elastic net regularization. Simulations show the feasibility of the

proposed algorithm as well as the improvement gained by the elastic

net regularization. Future work will focus on the application of this

method to real observations and developing distributed software that

increases computational speed.

APPENDIX: GRADIENT AND HESSIAN

The form of the original cost function (6) is structurally similar

to the one considered in [23]. Therefore, by simple substitutions, it is

Fig. 6. Average model construction error variation with frequency.

possible to derive the gradient and the Hessian. We get the gradient

of the augmented Lagrangian as

grad(L,Xj) = grad(hj(Xj),Xj) +
1

2
Yj +

ρ

2
(Xj − Z) (16)

where

grad(hj(X),X) (17)

= −
∑

f∈Fj

∑

pqk

(
A

T
p

(
JpkfCpqkfJ

H
qkf

− ApXΦαβf C̃pqkfΦ
H
αβfX

H
A

T
q

)
AqXΦαβf C̃

H
pqkfΦ

H
αβf

+A
T
q

(
JpkfCpqkfJ

H
qkf

− ApXΦαβf C̃pqkfΦ
H
αβfX

H
A

T
q

)H
ApXΦαβf C̃pqkfΦ

H
αβf

)
.

Similarly, the Hessian becomes

Hess(L,Xj ,η) = Hess(hj(Xj),Xj ,η) +
ρ

2
η (18)

where

Hess(hj(X),X,η) (19)

=
∑

f∈Fj

∑

pqk

(
A

T
p

(
(JpkfCpqkfJ

H
qkf

− ApXΦαβf C̃pqkfΦ
H
αβfX

H
A

T
q )Aqη

−Ap(XΦαβf C̃pqkfΦ
H
αβfη

H

+ηΦαβf C̃pqkfΦ
H
αβfX

H)AT
q AqX

)
Φαβf C̃

H
pqkfΦ

H
αβf

+ A
T
q

(
(JpkfCpqkfJ

H
qkf

− ApXΦαβf C̃pqkfΦ
H
αβfX

H
A

T
q )

H
Apη

−Aq(XΦαβf C̃pqkfΦ
H
αβfη

H

+ ηΦαβf C̃pqkfΦ
H
αβfX

H)HA
T
p ApX

)
Φαβf C̃pqkfΦ

H
αβf

)

.

The only difference is in the gradient with respect to Z, which is

grad(L,Z) =
∑

j

1

2
(−Yj + ρ (−Xj + Z)) + λZ+ µ∂‖Z‖1

(20)

where ∂‖Z‖1 is the subgradient of ‖Z‖1.
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