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ABSTRACT

Sampling the physical-array autocorrelations is the initial processing
step in standard direction-of-arrival (DoA) estimation with coprime
arrays. These samples are then organized into an autocorrelation
matrix estimate of a uniform-linear virtual coarray, which in turn
is used for DoA estimation. Existing autocorrelation-sampling
approaches provide the exact coarray autocorrelation matrix for
asymptotically large sample support; however, they attain arbi-
trary/suboptimal mean-squared estimation error (MSE) for lim-
ited/low sample support. In this work, we present a minimum-MSE
(MMSE) approach for autocorrelation sampling. The proposed
method offers a superior autocorrelation-matrix estimate that can at-
tain higher DoA estimation accuracy than the standard counterparts.

Index Terms— Coprime arrays, DoA estimation, mean-squared-
error, sparse arrays.

1. INTRODUCTION

Coprime arrays offer increased degrees of freedom compared to
uniform linear arrays (ULAs) equipped with the same number of
elements [1–15]. This is due to their particular structure and ac-
complished by thereto tailored intelligent receiver processing. In
practice, coprime arrays allow for the estimation of significantly
increased number of directions-of-arrival (DoAs). Coprime-arrays
have also been studied for beamforming [16] and space-time pro-
cessing [17].

DoA estimation with coprime arrays is conducted by processing
the entries of the (estimated) spatial autocorrelation matrix of the
physical array. Leveraging the specific array structure, intelligent
processing of the autocorrelations offers a signal subspace estimate
equivalent to the subspace of a larger virtual ULA, commonly re-
ferred to as “coarray.” Certainly, DoA estimation can be performed
by standard multiple-signal classification (MUSIC) on the coarray
signal subspace, with the ability to resolve significantly increased
number of DoAs. First, the coprime array receiver samples the es-
timated physical-array autocorrelations and, possibly, extrapolates
them by means of compressive-sensing techniques [18, 19]. Then,
these samples are spatially smoothed to form a matrix within the
span of which the signal and noise subspaces are separable [5, 12].
The most common approach samples the autocorrelations by selec-
tion [1], selecting a single sample per coarray element. Other works
sample by averaging all autocorrelation values that correspond to
each coarray element [12]. The two methods coincide when applied
on the nominal physical-array autocorrelations –which the receiver
could only estimate with asymptotically large number of snapshots.
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However, their performance differs significantly for the realistic case
of limited/small number of snapshots. A recent theoretical analysis
formally proved that averaging-sampling exhibits superior MSE es-
timation performance compared to selection-sampling [20].

In this paper, we present a novel autocorrelation sampling ap-
proach that, for any number of snapshots, estimates the coarray au-
tocorrelation matrix with minimum-MSE (MMSE). Our numerical
studies show that the proposed sampling can attain improved DoA
estimation accuracy.

2. SIGNAL MODEL AND PROBLEM STATEMENT

Consider coprime array of length L
4
= 2M + N − 1, for coprime

naturals (M,N) such that M < N [1], formed by overlapping a
length-N ULA with elements at positions {pM,i = (i−1)Md}Ni=1,
and a length-(2M − 1) ULA with elements at positions {pN,i =
iNd}2M−1

i=1 . Here, d is the reference unit spacing (e.g., one-half
wavelength). The coprime array element positions are given by

the entries of p
4
= sort([pM,1, . . . , pM,N , pN,1, . . . , pN,2M−1]>),

where sort(·) sorts the entries of its vector argument in ascending
order. We assume that narrowband signals from K < MN + M
sources impinge on the array with carrier frequency fc and propa-
gation speed c. Under far-field conditions, the signal from source
k ∈ {1, 2, . . . ,K} impinges on the array from direction θk ∈
(−π

2
, π

2
] with respect to the broadside. The array response vector

s(θk) for source k is s(θk)
4
=
[
v(θk)[p]1 , . . . , v(θk)[p]L

]>
∈ CL,

with v(θ)
4
= exp

(−j2πfc
c

sin(θ)
)

for every θ ∈ (−π
2
, π

2
]. The qth

received vector takes the form

yq =
K∑
k=1

s(θk)ξq,k + nq ∈ CL×1, (1)

where ξq,k ∼ CN (0, dk) is the qth symbol for source k (power-
scaled and flat-fading-channel processed) and nq ∼ CN (0L, σ

2IL)
is additive white Gaussian noise (AWGN). We assume that the ran-
dom variables are statistically independent across different snapshots
and the symbols from different sources are independent of each other
and of every entry of nq . The receiver’s goal is to estimate the source

DoAs in Θ
4
= {θ1, θ2, . . . , θK}. Defining the source power-vector

d
4
= [d1, d2, . . . , dK ]> ∈ RK+ and array-response matrix S

4
=

[s(θ1), s(θ2), . . . , s(θK)] ∈ CL×K , the received-signal autocorre-

lation matrix is given by Ry
4
= E{yqyHq } = S diag(d) SH+σ2IL.

Accordingly, we define r
4
= vec(Ry) =

∑K
i=1 a(θi)di + σ2iL ∈

CL
2

, where vec(·) returns the column-wise vectorization of its ma-
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Fig. 1. Coprime processing steps: from a collection of samples {yq}Qq=1 to the estimated coarray signal-subspace basis U.

trix argument, a(θi)
4
= s(θi)

∗ ⊗ s(θi), iL
4
= vec(IL) ∈ RL

2

,
and ‘⊗’ is the Kronecker product operator [21]. By coprime num-
ber theory [1], for every n ∈ {−L′ + 1,−L′ + 2, . . . , L′ − 1}
with L′

4
= MN + M , there exists a well-defined set of indices

Jn ⊂ {1, 2, . . . , L2}, such that

[a(θ)]j = v(θ)n ∀j ∈ Jn, (2)

for every θ ∈ (−π
2
, π

2
]. We henceforth consider that Jn contains

all j indices that satisfy (2). In view of (2), the receiver in standard
coprime DoA estimation [1] selects any single index jn ∈ Jn, for
n ∈ {−L′+1, . . . , L′−1}, and builds the L2× (2L′−1) selection

sampling matrix Esel
4
=
[
ej1−L′ ,L2 , ej2−L′ ,L2 , . . . , ejL′−1,L

2

]
,

where, for any p ≤ P ∈ N+, ep,P is the pth column of IP . That is,
the receiver samples the autocorrelations contained in r, discarding
by selection all duplicates (i.e., every entry with index in Jn \ jn,
for every n), to form

rsel
4
= E>selr =

K∑
i=1

asel(θi)di + σ2eL′,2L′−1, (3)

where, for any θ ∈ (−π
2
, π

2
], asel(θ)

4
= E>sela(θ) = [ v(θ)1−L′ ,

v(θ)2−L′ , . . . , v(θ)L
′−1 ]> ∈ C2L′−1. Thereafter, the receiver ap-

plies spatial-smoothing to organize the sampled autocorrelations in
the matrix

Zsel
4
= F(IL′ ⊗ rsel) ∈ CL

′×L′ , (4)

where F
4
= [F1,F2, . . . ,FL′ ] and, for every m ∈ {1, 2, . . . , L′},

Fm
4
= [0L′×(L′−m), IL′ ,0L′×(m−1)]. Importantly, by the defini-

tions in (3) and (4), it holds that Zsel = Scodiag(d)SHco + σ2IL′ ,

where [Sco]m,k
4
= v(θk)m−1, for every m ∈ {1, 2, . . . , L′}

and k ∈ {1, 2, . . . ,K}. That is, Zsel coincides with the auto-
correlation matrix of a length-L′ ULA with elements at locations
{0, 1, . . . , L′ − 1}d. Therefore, standard MUSIC DoA estimation
can be applied on Zsel, with the ability to resolve concurrently
K < L′ DoAs. Specifically, let the columns of Usel ∈ CL

′×K be
the dominant left-hand singular vectors of Zsel, corresponding to
its K highest singular values, calculated by means of singular value
decomposition (SVD). Then, span(Usel) = span(Sco). Defin-

ing v(θ)
4
=
[
1, v(θ), . . . , v(θ)L

′−1
]>

for θ ∈ (−π
2
, π

2
], we can

accurately decide θ ∈ Θ⇔
(
IL′ −UselU

H
sel

)
v(θ) = 0L′ . Equiv-

alently, we can identify the angles in Θ by the K local minima of
the MUSIC spectrum

PMU (θ) =
∥∥∥(IL′ −UselU

H
sel

)
v(θ)

∥∥∥2

. (5)

Interestingly, among other works, [12] recently proposed replac-
ing Esel in (3) by the L′ × (2L′ − 1) averaging sampling ma-

trix Eavg , where, for every i ∈ {1, 2, . . . , 2L′ − 1}, [Eavg]:,i
4
=

1
|Ji−L′ |

∑
j∈Ji−L′

ej,L2 . By (2) and the fact that

[iL]j =

{
1, j ∈ J0

0, j /∈ J0
, (6)

it holds that, for any given n ∈ {−L′+1, . . . , L′−1}, [r]j = e>j,L2r
takes the same value for every j ∈ Jn. Thus,

ravg
4
= Eavg

>r = rsel. (7)

Therefore, MUSIC DoA estimation in the form of (5) can be equiv-
alently conducted by SVD of

Zavg
4
= F(IL′ ⊗ ravg) = Zsel. (8)

However, in the case of practical interest where Ry is unknown
and estimated by a finite collection of snapshots, the two autocor-
relation sampling methods do not coincide and, therefore, neither
do their corresponding MUSIC spectra. Specifically, Ry is practi-

cally estimated by a collection of Q snapshots, {yq}Qq=1, as R̂y
4
=

1
Q

∑Q
q=1 yqy

H
q . Accordingly, r is estimated by r̂

4
= vec(R̂y) =

1
Q

∑Q
q=1 y

∗
q ⊗yq. Then, from (3) and (7), the selection and averag-

ing sampled autocorrelation vectors are estimated by

r̂sel
4
= E>selr̂ and r̂avg

4
= E>avg r̂, (9)

respectively. Similarly, MUSIC can be applied using the K domi-
nant left-hand singular vectors of either

Ẑsel
4
= F(IL′ ⊗ r̂sel), or Ẑavg

4
= F(IL′ ⊗ r̂avg). (10)

Indeed, both Ẑsel and Ẑavg have been employed before in the liter-
ature [3,12]. From (7) and the fact that r̂ is a Maximum-Likelihood,
unbiased, consistent estimate of r [22], it naturally follows that as
the sample support Q increases asymptotically, both Ẑsel and Ẑavg
tend to Zsel. However, for finite values of sample-support Q, the
two methods differ significantly. In [20], we proved that averaging-
sampling outperforms selection-sampling in mean autocorrelation-
matrix estimation performance, for any given Θ.

In Fig. 1, we offer a schematic illustration of the coprime pro-
cessing procedure presented above. In the sequel, we extend the re-
sults in [20] and present a novel autocorrelation sampling approach
that, for any value of Q and any system configuration parameters
(M,N , K, d, σ), offers the minimum-MSE (MMSE) estimate of
the coarray autocorrelation matrix.
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3. PROPOSED MMSE AUTOCORRELATION SAMPLING

In the second step of coprime-array processing (see Fig. 1), the re-
ceiver applies linear sampling in the autocorrelation entries of r̂, by
means of a sampling matrix E. Arguably, a preferred sampling ma-
trix will attain consistently (i.e., for any possible configuration of
DoA Θ) low squared-estimation error ‖E>r̂ − rsel‖2 –if this error
is zero, then MUSIC will provide the exact DoAs in Θ. Following
this criterion, the proposed receiver uses the snapshots {yq}Qq=1 to
calculate the minimum mean-squared-error sampling matrix E, as-
suming that, in the most general case and in lieu of any pertinent
prior information, θk follows a uniform distribution independently
of θl, for every k 6= l; i.e., θk ∼ U(−π

2
, π

2
).

Before we proceed with deriving the MMSE sampling matrix,

let us start with some helpful preliminary definitions. Defining A
4
=[

Sdiag([
√
d1,
√
d2, . . . ,

√
dK ]>), σIL

]
, it holds Ry = AAH .Ac-

cordingly, r can be written as r = (A∗ ⊗A) vec (IK+L). Defining

V
4
= A∗ ⊗ A ∈ CL

2×(K+L)2 and i
4
= vec (IK+L) ∈ R(K+L)2 ,

then it holds

r = Vi. (11)

Naturally, rsel and ravg in (3) and (7), respectively, take the equiv-
alent form rsel = E>selVi = E>avgVi = ravg . Next, we notice
that for the qth snapshot yq ∈ CN (0,Ry) in (1), there exists some
xq ∼ CN (0K+L, IK+L) such that yq = Axq. Moreover, xq is
independent from xp for any pair (p, q) such that p 6= q. Defining

W
4
= 1

Q

∑Q
q=1 xqx

H
q , the estimated received-signal autocorrela-

tion matrix R̂y = 1
Q

∑Q
q=1 yqy

H
q becomes R̂y = AWAH . Thus,

it holds

r̂ = Vw, (12)

where w
4
= vec (W). As discussed above, in this work we propose

to employ sampling matrix Eprop that solves

min
E∈CL2×2L′−1

E
Θ,w

{∥∥∥EHVw −E>selVi
∥∥∥2

2

}
. (13)

That is, we propose to sample r̂ in a way such that the MSE of the
estimated samples from the nominal1 samples is minimized, under
the generic assumption that θk ∼ U(−π

2
, π

2
). Of course, the prob-

lem in (13) could facilitate any specific distribution for θk different
than the uniform. In the sequel, for space economy, we present the
solution of (13) in 4 steps.

Step 1: Define G
4
= VwwHVH and H

4
= Vwi>VH . Then, (13)

becomes

min
E

E
Θ,w

{
Tr
(
EHGE

)
−2<

{
Tr
(
EHHEsel

)}}
, (14)

where <{·} extracts the real part of its argument and Tr (·) operator
returns the sum of the diagonal entries of its argument.

Step 2: Define GE
4
= EΘ,w{G}, and HE

4
= EΘ,w{H}; then, it can

be shown (omitted from this paper due to lack of space) that (14)
becomes

min
E

Tr
(
EHGEE

)
−2<

{
Tr
(
EHHEEsel

)}
. (15)

1Recall that by “nominal”, we refer to the samples obtained by applying
selection (or, averaging) sampling on the autocorrelations of r, when Ry

(and thus, r), is exactly known to the receiver.

γ
(i,m)
j Condition on (i, j,m)

[d][ü]j [d][u̇]jB(ω̈m,i + ω̇i,m) [u̇]j=[ü]j ≤ K,
[d][ü]j [d][u̇]jB(ω̈m,i)B(ω̇i,m) [u̇]j , [ü]j ≤ K; [ü]j 6= [u̇]j
σ2[d][u̇]jB(ω̈m,i) [u̇]j ≤ K; [ü]j−K=[v̈]i=[v̈]m
σ2[d][ü]jB(ω̇i,m) [ü]j ≤ K; [u̇]j−K=[v̇]i=[v̇]m
σ4 [u̇]j−K=[v̇]i=[v̇]m; [ü]j−K=[v̈]i = [v̈]m
0 otherwise
Auxiliary variables used in the above conditions:
ω̇i,m = [ṗ]i − [ṗ]m, ω̈i,m = [p̈]i − [p̈]m, sx = [1, 2, . . . , x]>,
u̇ = 1K+L ⊗ sK+L, ü = sK+L ⊗ 1K+L, v̇ = 1L ⊗ sL, v̈ = sL ⊗ 1L.

Table 1. Value of γ(i,m)
j based on conditions on (j, i,m).

Step 3: In this step, we calculate HE and GE in closed form. First,
we observe that for any x ∈ R and θ ∈ (−π

2
, π

2
], it holds

E
θ
{v(θ)x}= 1

π

∫ π
2

−π
2

exp

(
−xj2πfc

c
sin(θ)

)
dθ=J0

(
x

2πfc
c

)
, (16)

where J0 denotes the 0-th order Bessel function of the first kind
[23]. For ease of notation, we define B(x)

4
= J0(x 2πfc

c
). Also, we

define ṗ
4
= 1L ⊗ p, p̈

4
= p ⊗ 1L, and ωi

4
= [ṗ]i − [p̈]i. Then,

with few algebraic manipulations, we find that, for every (i,m) ∈{
1, 2, . . . , L2

}2, the (i,m)-th entry of HE is given by2

[HE]i,m = ‖d‖22 B (ωi − ωm) + σ4δ(ωi)δ(ωm) (17)

+ σ2
(
1>Kd

)(
δ(ωi)B(−ωm) + B(ωi)δ(ωm)

)
(18)

+ B(ωi)B(−ωm)
(

(1>Kd)2 − ‖d‖22
)
. (19)

Clearly, (19) is easily calculable at the receiver, if the transmission
powers in d are known (an assumption made for simplicity in this

paper). Next, if P
4
= EΘ{VVH}, we can show that

GE = HE +
1

Q
P. (20)

For P it holds that [P]i,m =
∑(k+L)2

j=1 γ
(i,m)
j for any (i, j) ∈

{1, 2, . . . , L2}2. The value γ(i,m)
j for every triplet (i, j,m) is of-

fered in Table 1. The proofs of (19), (20) and Table 1 are omitted
from this paper due to lack of space.
Step 4: In view of (19) and (20), setting to 0 the derivate of the
objective function in (15) with respect to E yields(

HE +
1

Q
P

)
Eprop = HEEsel. (21)

Our numerical studies have shown that P defined above is of full
column rank. Therefore, for any finite value of Q,

(
HE + 1

Q
P
)

is
invertible and the proposed MMSE sampling matrix is given by

Eprop =

(
HE +

1

Q
P

)−1

HEEsel. (22)

IfQ and P are such that 1
Q
P is (close to) singular then

(
HE + 1

Q
P
)

is not invertible any more and (22) cannot be formed. Instead, an
iterative process such as Gradient descent [24] or Newton’s method

2Notice that B(x) = B(−x) and δ(x) = δ(−x) for any x ∈ R, imply-
ing that [HE]i,m = [HE]m,i which, combined with the fact that HE is by
definition a real-valued matrix, implies that HE = H>E = HH

E .
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Fig. 2. MSE in estimating Zsel versus sample support Q. At every
realization, {θk}5k=1 are drawn from U(−π
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Fig. 3. MSE in estimating Zsel versus sample support Q. Fixed
θ1 = −63◦, θ2 = −45◦, θ3 = −20◦, θ4 = 43◦, θ5 = 76◦.

can be employed for the acquisition of Eprop and the minimization
in (15).

Given the proposed autocorrelation sampling matrix Eprop, rsel
in (3) is accordingly estimated by r̂prop = E>propr̂. In turn, the coar-
ray autocorrelation matrix Zsel is estimated by

Ẑprop = F (IL′ ⊗ r̂prop) . (23)

Then, similar to the state of the art, a MUSIC spectrum is formed
by the K left-singular vectors of Ẑprop and, by the peaks of this
spectrum, the receiver estimates the K source DoAs.

4. NUMERICAL RESULTS

Consider an (M,N) = (2, 3) coprime array with L = 6 antenna
elements. Signals from K = 5 sources impinge on the array with
equal power α2 = 10 dB. Noise variance σ2 is set to 0 dB. For each
source k ∈ {1, 2, . . . , 5} it then holds that the signal-to-noise-ratio
(SNR) is 10 dB.

We commence our studies by evaluating the performance of the
proposed sampling matrix in terms of mean-squared-error (MSE) in
estimating Zsel. That is, we let Q vary in {20, 80, . . . , 500} and
draw 105 independent realizations of {θk}5k=1 for θk ∼ U(−π

2
, π

2
],

and noise. At every realization r, we compute Ẑsel,r, Ẑavg,r ,
and Ẑprop,r as in (10) and (23) respectively, and measure the ap-

proximate MSE MSE({Zr}105

r=1)
4
= 1

105

∑105

r=1 ‖Zsel,r − Zr‖2F
for every Zr ∈ {Ẑsel,r, Ẑavg,r, Ẑprop,r}. In Fig. 2, we plot
MSE({Zr}105

r=1) versus sample-support Q. Expectedly, the pro-
posed sampling approach attains the lowest MSE across all values
of Q, as it was designed to minimize the MSE in estimating Zsel.
As Q increases, the gap between any two curves is diminishing.

As a second study, we evaluate MSE({Zr}105

r=1) of the proposed
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Fig. 4. Root-mean-squared-error versus sample support Q. Fixed
θ1 = −63◦, θ2 = −45◦, θ3 = −20◦, θ4 = 43◦, θ5 = 76◦.

coprime array autocorrelation method for a given/fixed set of DoAs.
That is, we fix θ1 = −63◦, θ2 = −45◦, θ3 = −20◦, θ4 = 43◦,
θ5 = 76◦ across all 105 realizations. The rest of the parameters re-
main the same as in the study of Fig. 2 above. MSE({Zr}105

r=1) is
shown in Fig. 3. Interestingly, the MSE curves look very similar to
those of Fig. 2. Also, at each realization we apply MUSIC on Zr ∈
{Ẑsel,r, Ẑavg,r, Ẑprop,r} and measure the root-mean-squared error

(RMSE) defined as RMSE
4
=

√
1
5

∑5
k=1

1
105

∑105

r=1

(
θk − θ̂k,r

)2

.

In Fig. 4 we plot the calculated RMSE versus sample support Q.
We observe that the proposed method attains, across the board, su-
perior DoA estimation performance compared to both its counter-
parts. Specifically, when Q varies from 20 to 260, the proposed
method exhibits 10%-20% lower RMSE than averaging sampling;
for Q > 260 this performance gap further increases all the way to
45%. Moreover, the proposed method outperforms remarkably the
widely employed selection sampling method, exhibiting up to 75%
lower RMSE for Q = 500.

5. CONCLUSION AND FUTURE WORK
In this paper, we presented for the first time the autocorrelation
sampling matrix that attains minimum MSE in the estimation of
the virtual-coarray autocorrelation matrix Zsel, for uniformly dis-
tributed source DoAs. The proposed sampling matrix was shown
to attain superior MSE (estimation of Zsel) and RMSE (estimation
of DoAs in Θ) performance, compared to the selection-sampling
and averaging-sampling counterparts. Clearly, the proposed MMSE
design scheme can be applied for different prior DoA distributions
(other than U(−π

2
, π

2
)). In view of the presented findings, in the

immediate future, we plan to address the following:
(i) Derive in closed form the MSE attained by Eprop for uniformly
distributed DoAs.
(ii) Derive in closed form the MSE attained by Eprop for any given
selection of DoAs in Θ.
(iii) Assuming the powers in d to be unknown to the receiver, re-
formulate the MSE minimization over jointly random Θ and d.

The presented work initiates a new line of research for optimized
autocorrelation-sampling in coprime arrays and is expected to un-
lock significant performance enhancement in DoA estimation with
coprime arrays.
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