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ABSTRACT

This paper proposes a novel approach to sparse recovery as-
sisted direction-of-arrival (SR-DOA) estimation. By exploit-
ing the sparsity inherent in the spatial spectrum, the DOA es-
timation is formulated as a sparse nonnegative least squares
problem. Meanwhile, in order to enhance the estimation accu-
racy, the devised method is able to suppress the additive Gaus-
sian noise but at the expense of a few degrees-of-freedom,
and mitigate the sampling errors by exploiting its asymptotic
distribution. Subsequently, the sparse Bayesian learning with
nonnegative Laplace prior is utilized to yield the DOA esti-
mation. The performances of the proposed SR-DOA estima-
tor along with other two existing approaches are investigated
and compared. Numerical results show that the proposed SR-
DOA algorithm is superior to the state-of-the-art methods in
terms of the estimation accuracy.

Index Terms— DOA, sparse recovery, sparse nonnega-
tive least squares problem, sparse Bayesian learning, nonneg-
ative Laplace prior

1. INTRODUCTION

Since direction-of-arrival (DOA) estimation can be widely
used in many areas, such as radar, sonar and wireless com-
munications, it has received considerable attention in litera-
ture. However, the estimation performances of the existing
algorithms usually degrade seriously in the situations of low
signal-to-noise ratio (SNR) or small number of snapshots.

Because the number of source signals is usually limited,
the spatial spectrum observed is sparse. Thus, by properly u-
tilizing the compressive sensing techniques, the sparse prop-
erty inherent in the array signal model can be exploited to im-
prove the DOA estimation performance. In particular, DOA
is estimated by minimizing the data fitting error as well as the
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sparsity of solution. In [1], the sparsity of solution is gen-
erated by forming an ℓ1-norm penalty function. In order to
enforce the sparsity of solution, a weighted ℓ1-norm penal-
ty function which utilizes the property of noise subspace is
proposed by [2]. In addition, the regularization parameter,
which is used to control the trade-off between the data fitting
error and the sparsity of solution, is obtained with the aid of
the Lagrangian duality in [3, 4]. Although, the regularization
parameter derived in [4] does not rely on any a priori knowl-
edge, it is suboptimal because it only satisfies the sufficient
conditions of optimal solution. Furthermore, when the grid
is dense, the computational complexities of the above algo-
rithms are unaffordable.

Alternatively, the sparse Bayesian learning (SBL) [5],
which avoids the regularization parameter selection, can be
used to solve the sparse recovery problem. Specifically, the
DOA is determined by maximizing its posterior probability,
namely, the product of the likelihood probability and the prior
probability. In order to obtain more degrees-of-freedom (D-
OFs) to estimate DOA, the DOA estimation problem is firstly
converted to a sparse nonnegative least squares (S-NNLS)
problem [6]. Then, the nonnegative Gaussian probability
density function (PDF) is considered as the prior probability
to solve the S-NNLS problem [7]. To enforce the sparsity
of solution, the nonnegative Gaussian PDF is replaced by
the Laplace PDF [8]. Although it is is not conjugate to the
Gaussian likelihood function, it can be implemented by a
hierarchical way. In other words, the Laplace PDF can be
constructed by Gaussian PDF and Exponential PDF. Nev-
ertheless, according to [9, 10], the power of Gaussian noise
estimated by SBL may not be accurate, leading performance
degradation.

In this paper, a sparse recovery assisted DOA (SR-DOA)
estimator is proposed. First, we show that the high-resolution
DOA estimation can be formulated as a sparse optimization
problem. Second, a selection matrix is designed for mitigat-
ing the effect of additive Gaussian noise but at the expense of
a small amount of DOFs. Third, a whitening filter is intro-
duced for coping with the sampling errors. Last, SBL with
nonnegative Laplace is used to determined the DOAs. Our
simulation results show that the proposed SR-DOA estimator
outperforms all the benchmark DOA estimators when SNR is
in low region.
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2. DOA ESTIMATION PROBLEM FORMULATION

Consider K uncorrelated narrowband far-field signals, sk(t),
k = 1, 2, · · · ,K, impinging on a linear sparse array which
consists of M omnidirectional sensors located at [0, d1, · · · ,
dM−1], where dm represents the distance between the (m +
1)-th sensor and the first sensor. Then, the array output vector
x(t) of T snapshots can be expressed as

x(t) = As(t) + n(t), t = 1, 2, · · · , T (1)

where s(t) = [s1(t)], s2(t), · · · , sK(t)]T and n(t) de-
note the source signal and additive Gaussian noise, re-
spectively. A consists of K steering vectors, i.e., A =
[a(θ1),a(θ2), · · · ,a(θK)], with

a(θ) =

[
1, e−

j2πd1 sin(θ)
τ , · · · , e−

j2πdM−1 sin(θ)

τ

]T
where τ is the wavelength.

Note that the DOA of the k-th source signal is distributed
in the range of (−90◦, 90). Thus, by invoking all the possi-
ble DOAs, x(t) in (1) can be written in a high-resolution and
sparse representation as

x(t) = Ās̄(t) + n(t), t = 1, 2, · · · , T (2)

where A = [a(θ̄1),a(θ̄2), · · · ,a(θ̄K̄)] and the set of θ̄θθ =
{θ̄1, θ̄2, . . . , θ̄K̄} gives a sampling grid of all possible DOAs,
while s̄(t) = [s̄1(t)], s̄2(t), · · · , s̄K(t)]T with s̄k(t) being the
possible source signal. In general, we have K̄ ≫ K. There-
fore, s̄(t) is a sparse vector, whose k-th row is nonzero and
equals to the corresponding row of s(t) in (1). Consequently,
the problem of DOA estimation based on (1) is equivalent to
identifying the positions of the nonzero rows of x(t) in (2).

3. SPARSE RECOVERY ASSISTED DOA
ESTIMATION ALGORITHM

3.1. S-NNLS modeling

To begin with, the sample covariance matrix of x(t) of (2)
can be derived as

R̂ = ĀRsĀ
H
+Rn +E (3)

where Rs = E[̄s(t)s̄(t)H] = diag{σ2
1 ,· · ·, σ2

K̄
} with σ2

k =

E[̄sk(t)s̄k(t)H] being the power received from the k-th source
signal, Rn = diag{σ2, · · · , σ2} with σ2 being the variance
of noise, while E reflects the error between the covariance
matrix of x(t) given in (2), which is ĀRsĀ

H
+ Rn, and

its sample covariance matrix R̂ of (3). Let us vectorize (3),
yielding an M2-length vector, which is

y
∆
= vec{R̂} = V ςςς + ρρρ+ ξξξ (4)

where V
∆
= Ā

∗ ⊙ Ā, ςςς
∆
= [σ2

1 , · · · σ2
K̄
]T , ρρρ

∆
= vec(Rn) =

[σ2eT1 , · · · , σ2eTM ]T and ξξξ
∆
= vec(E). Here, (·)∗, ⊙ and

ei denote, respectively, the complex conjugate, Khatri-Rao
product [11], and the i-th column of the identity matrix IM .
Based on (4), our DOA estimation problem is converted to a
problem of identifying the locations of nonzero elements in
ςςς .

Firstly, we convert (4) into its real form, which can be
expressed as

ŷ = V̂ ςςς + ρ̂ρρ+ ξ̂ξξ (5)

where ŷ = [ℜ{y}T ,ℑ{y}T ]T , V̂ = [ℜ{V }T ,ℑ{V }T ]T ,
ρ̂ρρ = [ρρρT ,0T ]T and ξ̂ξξ = [ℜ{ξξξ}T ,ℑ{ξξξ}T ]T . Here, 0 is an
M2 × 1 zero vector.

From (5) we know that there are M nonzero elements
in the noise resulted component of ρ̂ρρ, whose positions are
known. Therefore, they can be canceled by deleting the corre-
sponding elements in ŷ but at the cost of the loss of M DOFs.
In mathematical form, the cancellation of the noise resultant
components in (5) can be implemented by pre-multiplying a
selection matrix J satisfying Jρ̂ρρ = 0 on ŷ, yielding

u
∆
= Jŷ = JV̂ ςςς + Jξ̂ξξ. (6)

Note that, according to the structure of ei, J is constructed
from the identity matrix I2M2 by removing its {0 × M +
1, 1×M+2, · · · , (M−1)×M+M} rows.

According to [12], ξξξ of (4) is asymptotically complex nor-
mal (CN ) distributed, if T is sufficiently large. In this case,
the distribution of ξ̂ξξ in (5) can be approximated as [13]

ξ̂ξξ∼N (0,Rξ̂ξξ) (7)

where

Rξ̂ξξ =
1

2
[ℜ{Rξξξ} − ℑ{Rξξξ}; ℑ{Rξξξ} ℜ{Rξξξ}]

with

Rξξξ ∼CN (0, (R̂
T
⊗ R̂)/P ).

Here, ⊗ denotes the Kronecker product [11]. Therefore, Jξ̂ξξ in
(6) follows the distribution of N (0,G) with G

∆
= JRξ̂ξξJ

T .

Explicitly, the transformed noise Jξ̂ξξ is colored, which may
lead to severe performance degradation. In order to alleviate
its effect, we may whiten Jξ̂ξξ through multiplying u of (6) by
G− 1

2 , yielding an S-NNLS model, i.e.,

û
∆
= G− 1

2u =ΨΨΨςςς + ννν (8)

where ΨΨΨ ∆
= G− 1

2JV̂ and ννν
∆
= G− 1

2Jξ̂ξξ ∼ N (0, I2M2−M ) is
now a white Gaussian noise vector.
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3.2. Sparse Bayesian learning with nonnegative Laplace
prior

For the model (8), we have the Gaussian likelihood function
as

p(û|ςςς) ∼ N (ΨΨΨςςς, I2M2−M ). (9)

In addition, according to [8], the prior for ςςς can be consid-
ered as a nonnegative Laplace distribution. However, since
the nonnegative Laplace prior is not conjugate to the Gaus-
sian likelihood function, it cannot be directly applied to the
sparse Bayesian learning. In order to solve this issue, we can
model it in a hierarchical way [5, 8], which is described as

p(ςςς|λ) =
∫

p(ςςς|γγγ)p(γγγ|λ)dγγγ

= λK̄e
−λ

K̄∑
k=1

ςςςk

(10)

where

p(ςςς|γγγ) =
K̄∏

k=1

N+(ςςςk|0, γγγk) (11)

with

N+(ςςςk|0, γγγk) = 2N (ςςςk|0, γγγk) (12)

being the zero-mean nonnegative Gaussian probability densi-
ty function (PDF), while

p(γγγ|λ) =
K̄∏

k=1

p(γγγk|λ)

with

p(γγγk|λ) =
λ

2
e−

λγ
2

being the Exponential PDF. Furthermore, the hyperprior of λ
in (10) is assumed to follow Gamma distribution, i.e.,

p(λ) =
ba

Γ(a)
λa−1e−bλ (13)

where Γ(a) is a Gamma function, while the a and b is set to a
very small constant c for simplification.

Based on the Bayes rule, we can estimate ςςς by maximizing
its posterior density, namely,

ς̂ςς = argmax
ςςς

p(ςςς|γ, λ, û)

∝ argmax
ςςς

p(û|ςςς)p(ςςς|γγγ)

∝ argmax
ςςς

N+(ςςς|µµµ,ΣΣΣ)

= µµµ

(14)

where

µµµ = ΣΣΣΨΨΨT û

and

ΣΣΣ =
(
ΨΨΨTΨΨΨ+Λ−1

)−1

where Λ = diag{γγγ}. From (14), we readily find that ς̂ςς is a
function of γγγ. Hence, once γγγ is estimated, the Maximum-A-
Posteriori (MAP) estimate of ς̂ςς can be determined by (14).

The γγγ and its associated hyperparameter λ can be estimat-
ed by maximizing their posterior density, namely, p(γγγ, λ|û).
For convenience, considering ςςς as a hidden variable, γγγ and
λ can be readily obtained by expectation-maximization (EM)
algorithm [14], which is written as

γ̂γγ, λ̂ = argmax
γγγ,λ

E[logp(ςςς,γγγ, λ|û)]

∝ argmax
γγγ,λ

E[logp(ςςς,γγγ, λ, û)].
(15)

Furthermore, the p(ςςς,γγγ, λ, û) of (15) can be expanded as

p(ςςς,γγγ, λ, û) = p(û|ςςς)p(ςςς|γγγ)p(γγγ|λ)p(λ). (16)

Hence, when λ is given, γ̂γγ can be computed by

γ̂γγk = argmax
γγγk

E[logp(ςςς|γγγ) + logp(γγγ|λ)]

= − 1

2λ
+

√
1

4λ2
+

wk

λ

(17)

where wk is the second-order moment of ςςςk. With the aid of
(14), wk can be obtained by [6]

wk = µµµ2
k +ΣΣΣk,k +µµµk

√
2ΣΣΣk,k

π

e
µµµ2
k

2ΣΣΣk,k

erfc(− µµµk√
2ΣΣΣk,k

)
. (18)

Similarly, when γγγ is given, λ can be computed by

λ̂ = argmax
λ̂

E[logp(γγγ|λ) + logp(λ)]

=
K̄ − 1 + c
K̄∑

k=1

γγγk/2 + c

. (19)

From (17) and (19), it is easy to see that γ̂γγ and λ are the
functions of {ς̂ςς, λ} and γγγ, respectively. Recalling that ς̂ςς is a
function of γγγ, ς̂ςς can be determined in an iterative way, which
is tabulated in Algorithm 1.

4. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
SR-DOA method, and compare it with the state-of-the-art ap-
proaches, i.e., the nonnegative SBL (NNSBL) [8] and con-
ventional SBL [5] algorithms. We consider a linear sparse
array of 4 sensors with locations D = {0, d, 4d, 6d}, where
d is the basic element-spacing. Moreover, (−90◦90◦) space
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Algorithm 1 SR-DOA algorithm
Step 1: Construct û and ΨΨΨ from (8), and initialize γγγ.
Step 2: Calculate λ by (19).
Step 3: Determine ς̂ςς by (14).
Step 4: Update γγγ by (17).
Step 5: If the norm of the difference betweent the updated
γγγ and its last value is small enough, stop the algorithm;
Otherwise, jump to Step 2.

is sampled uniformly with interval 1◦ to obtain the direction
set of θ̄θθ. Six source signals, which have the common center
frequency of f = 200 Hz and common propagation speed
of c = 340 m/s, are assumed to come from the directions
of {−54◦,−28◦,−9◦, 10◦, 31◦, 56◦}. In addition, the signals
are generated by uncorrelated narrowband Gaussian sources.
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Fig. 1. RMSE versus SNR performance for different DOA
estimators at T=200.

Fig. 1 shows the root mean square error (RMSE) versus
SNR for different DOA estimators, where the number of snap-
shots is T = 200. We can explicitly observe that our proposed
SR-DOA method outperforms the other estimators when the
SNR is less than -12.5 dB. This is due to the fact that noise
power becomes dominated at low SNRs, which, when proper-
ly mitigated, leads to lower RMSE for the proposed approach
although it losses some DOFs. Note that although the addi-
tive Gaussian noise is estimated and compensated in NNSBL
algorithm, the estimate is not accurate as it is interfered by
the other hyperparameter, namely, γγγ, especially in low SNR
region [9, 10]. In addition, when the SNR is larger than -12.5
dB, the estimation performance of our proposed SR-DOA al-
gorithm is slightly worse than that of the NNSBL algorithm.
This is because the loss in DOFs becomes dominated at high
SNRs and thereby degrades the estimation performance. This
is why the degradation may be visible in relatively high SNR
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Fig. 2. RMSE versus number of snapshots for different DOA
estimators at SNR = −18 dB.

region, as indicated in Fig. 1.
Fig. 2 depicts the RMSE versus the number of snapshots

for different DOA estimators. As the number of snapshots
increases, the RMSE performances of our proposed SR-DOA
and NNSBL algorithms improves, while the performance of
the conventional SBL algorithm is almost unchanged. This
indicates that the conventional SBL algorithm is invalid when
the SNR is low. Furthermore, from Fig. 2, we can find that
the RMSE of the proposed SR-DOA algorithm is relatively
low, as long as the number of snapshots is not less than 150,
indicating that the proposed SR-DOA algorithm is superior to
other existing schemes in the scenarios of low SNR and small
number of snapshots.

5. CONCLUTIONS

A novel SR-DOA estimator has been proposed in this work.
Exploiting the sparsity of spatial spectrum, a sparse S-NNLS
model is constructed. Therein, the selection matrix and
whitening filter have been designed in order to mitigate the
effect of noise and sampling error on the DOA estimation.
Since the constructed selection matrix is based on the fact that
the power of noise is real, the cancellation of noise only at the
expense of a few DOFs. Subsequently, the sparse Bayesian
learning with nonnegative Laplace prior is used to solve the
S-NNLS problem, resulting in the MAP estimate of DOA.
Numerical results show that the proposed SR-DOA estima-
tor outperforms the state-of-the-art approaches in terms of
estimation accuracy for low SNRs.
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