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ABSTRACT 
 
For modern meter-wave radar, the performance of low-angle 
target altitude measurement is limited by multipath 
phenomenon, especially in the complex terrain environment 
where the multipath signal is perturbed by irregular surface. To 
address this problem, a practical signal model for meter-wave 
radar in practical terrain is first presented, where the influence 
of the perturbed multipath caused by irregular reflecting surface 
is taken into consideration. A novel compressive sensing (CS) 
based altitude measurement algorithm, combined with 
alternative optimization and dictionary updating techniques, is 
then proposed, in which the perturbation caused by the complex 
terrain can be iteratively compensated to estimate the target 
altitude more precisely. Numerical results based on both 
simulated data and real data demonstrate the effectiveness of 
the proposed algorithm under complex terrain environment. 
 

Index Terms— Compressed sensing, perturbational 
multipath, meter-wave radar, online dictionary updating. 
 

1. INTRODUCTION 
 
In modern warfare, the recognition of meter-wave radar has 
been increasing gradually due to its potential advantage of 
addressing the critical threats from stealth aircraft and anti-
radiation missile (ARM). However, the localization accuracy of 
meter-wave radar for low-angle target is affected by the highly 
correlated multipath caused by ground surface reflection [1]-[3]. 
It is difficult to deal with this problem mainly because of the 
fact that the direct and multipath signals lie within a half-power 
beamwidth and they usually have fairly small differences in 
both time delay and radar radial velocity. Therefore, the real 
target can hardly be distinguished from its multipath image in 
the spatial, Doppler, and/or time domains. 

                                                 
This work is supported by the National Science Fund for 
Distinguished Young Scholars (61525105). 

To address the problem mentioned above, considerable 
research work on the array signal processing techniques has 
been carried out. These commonly used methods can be mainly 
classified into two categories: subspace methods [4-6] and 
parametric methods [7-11]. The first group algorithms, 
including multiple signal classification (MUSIC) algorithm [4], 
suffer from significant performance degradation due to the high 
correlation of the real target and its multipath signals. Although 
the forward/backward spatial smoothing (FBSS) technique [5, 
12] could be introduced to achieve decorrelation preprocessing, 
it reduces the effective aperture and results in performance 
degradation. Alternatively, parametric methods contain a 
variety of maximum likelihood (ML) based estimator. Ballance 
has demonstrated that the solutions of these methods are 
equivalent [7]. In order to reduce the computation complexity 
of the ML algorithm, a simplified highly deterministic 
multipath signal model is studied by the refined maximum 
likelihood (RML) algorithm [8] with the assumption that the 
Earth’s surface is perfectly smooth. However, the steering 
vector of the multipath signal may be perturbed by an irregular 
terrain reflection, which leads to the simplified model produces 
mismatch. This mismatch may invalidate the existing altitude 
measurement algorithms. 

In this paper, a practical multipath signal model for meter-
wave radar is first presented, where the perturbation caused by 
irregular reflecting surface is considered. A novel altitude 
measurement algorithm based on CS framework [13-14], 
combined with alternative optimization and dictionary updating 
techniques, is then proposed. Inspired by the sufficient sparsity 
of the direct and multipath signals in the spatial domain, the CS 
technique is introduced to achieve the target direction by 
constructing a parameterized dictionary. In addition, the 
alternative optimization and dictionary updating techniques are 
utilized to mitigate the influence of the perturbed multipath, in 
which the dictionary atoms can be updated step-by-step to 
compensate the perturbation caused by irregular terrain and to 
locate the target more precisely. 

The remainder of this paper is organized as follows. Section 
2 formulates the perturbational multipath signal model. In 
Section 3, the proposed low-angle target altitude measurement 
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algorithm is detailed. Experimental results based on computer 
simulation and real data are presented in Section 4. Finally, we 
conclude the paper in Section 5. 
 

2. SIGNAL MODEL 
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Fig.1. Geometry of perturbational multipath model for VHF radar.

The illustration geometry of perturbational multipath signal 
model is depicted in Fig. 1. We consider a uniform linear array 
(ULA) with M-elements. The center height of the array and the 

point target height are 
a
h  and 

t
h , respectively. 

d
R  and 

s
R  are 

the lengths of the direct and the multipath paths, respectively. 
The dotted line (ACT) shows the conventional multipath model 
that reflected by a perfectly smooth surface, whereas the solid 
line (ABT) represents the introduced perturbational multipath 
model that reflected by a complex terrain, which is the main 
interest in this paper. The two separate paths of target and its 
image have the directions of d  and s , respectively. The 

vertical distance from the target to the reflected surface and the 
included angle between the reflected surface and the ideal 

smooth surface are 
t
h ¢  and a , respectively. 

The signal observed by the antennas can be represented as 
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where T( )  stands for the transpose.  da  and  sa  denote 

the steering vectors in the directions of the target and its 
multipath, which can be respectively expressed as 

  
Tsin( ) ( 1) sin( )1, , ,d dj j M

d e e         a   (2) 

  
Tsin( ) ( 1) sin( )1, , ,s sj j M

s e e         a   (3) 

where 2 d   , d  and   are the inter-element distance and 

the wavelength, respectively. 0 exp( 2 )j R       is the 

attenuation coefficient with 0  and s dR R R    represent the 

specular reflection coefficient and the path difference, 
respectively.  1 2diag , , , M  Γ   is the perturbation matrix, 

which is produced by the complex terrain reflection.  g t  and 

   T1 2( ), ( ), , ( )Mt n t n t n tn   are the complex envelope of the 

signal and the additive Gaussian white noise vector, 
respectively. 

Considering a more general multi-snapshot condition, (1) 
becomes the following representation 

     +d s      S a Γa g N  (4) 

where  1 2( ), ( ), , ( )L
M Lt t t S s s s  , 1 Lg   and M LN   

are defined similarly. L is the number of snapshots, M L  
denotes an M L  complex matrix. 
 

3. THE PROPOSED METHOD 
 
In this section, a novel target altitude measurement method 
based on CS framework with alternative optimization and 
dictionary updating techniques is proposed, which performs 
effectively in a complex terrain condition. The detail of this 
algorithm is shown in the following three subsections. 
 
3.1. Overcomplete representation based on the sparse 
representation framework 
 
We start to formulate the target localization problem as a sparse 

representation problem [15]. Let  1 , , , ,p P
d d d     and 

 1, , , ,q Q
s s s     be two sampling grids of target and its 

multipath locations of interest, respectively. Generally, both the 
number of potential target directions P and the number of 
potential image directions Q are assumed much greater than the 
number of sensors M, that is, P M  and Q M . An 

overcomplete dictionary    ,d sB Γ A ΓA  in terms of all 

possible directions is introduced, where dA  and sA  can be 

respectively given as 
 1( ), , ( ), , ( )p P

d d d d     A a a a   (5) 

 1( ), , ( ), , ( )q Q
s s s s     A a a a   (6) 

Thus, the signal model (4) is reduced to 

   +S B Γ W N  (7) 

where    
1

+, , , , P Q
l L

L W ω ω ω    represents the sparse 

coefficient matrix,    T + 1= ,l dl sl
P Q ω ω ω  , 1= , , P

dl dl dl   ω   

and 1= , , Q
sl sl sl   ω   are the associated coefficient vectors for 

the target and its multipath image, respectively. 
In fact, this overcomplete representation allows us to 

convert the problem of direction estimation into the problem of 
sparse spectrum estimation, which can be solved by utilizing 
the following 1l  methodology 

     2

12,

ˆ ˆ, =arg min + 
Γ W

Γ W S B Γ W W  (8) 

where 
1
  and 

2
  are the l1-norm and l2-norm, respectively. 

  is a parameter controls the tradeoff between the residual 

norm and the sparsity of the spectrum. The main drawback of 
this method is the required computational complexity increases 
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rapidly with the increasing L. Thus, when L is large, it is 
difficult to satisfy the real-time application. 
 
3.2. Direction estimation with multiple snapshots based 
on CS and dictionary updating 
 
To reduce the computational complexity and enhance the 
robustness to noise, the singular value decomposition (SVD) of 
the data matrix S is firstly implemented. The key idea is to 
decompose S into the signal and noise subspaces and just keep 
the signal subspace. Due to the highly correlation of direct and 

multipath signals, the set of vectors   =1
( )

L

l l
ts  would lie in a one-

dimensional subspace (without noise). Thus, a reduced-
dimension signal subspace basis y, which contains most of the 
signal energy, can be obtained by 

   y S V1  (9) 

where   means the singular value thresholding 

   H
  S UΣ V  (10) 

Here,    1 , , Mdiag   
 

    Σ  , HUΣV  is the SVD 

operation of S ,  1, , Mdiag  Σ  , and  max ,0t t  . H( )  

denotes the conjugate transpose, 1  is an 1L  ones vector. In 
our problem,   is set as the second largest singular value of S  
due to the highly coherent nature of the sources. 

After the above operation is applied, the cost function in (8) 
can be reduce as 

     2

12,

ˆ ˆ, =arg min + 
Γ γ

Γ γ y B Γ γ γ  (11) 

where  T= ,d sγ γ γ , 1= , , P
d d d   γ   and 1= , , Q

s s s   γ   are the 

associated coefficient vectors for the target and its multipath, 
respectively. 

For objective function (11), the alternative optimization 
method is utilized, which produces to the following 
subproblems: 
1) Sparse coding: 

 
  2

12
ˆ =arg min +

s.t .

k

k




γ

γ y B Γ γ γ

Γ Γ
 (12) 

where ˆ
kγ  is the estimation of γ  in the kth iteration. 

0,1, ,k K  , K is the maximum number of iterations. The 
ideal smooth surface is firstly considered, 0Γ  is a diagonal 

matrix that all the elements are all one. Problem (12) is a 
convex optimization problem and the unique solution can be 
achieved by using the convex programming [16]. 
2) Dictionary updating: 

 
  2

12
ˆ =arg min +

ˆs.t .

k

k




Γ

Γ y B Γ γ γ

γ γ
 (13) 

Here, ˆ
kΓ  is the estimation of Γ  in the kth iteration. A 

convenient CVX solver [17] can be used to solve the problem 
in (13). The choice of   and the convergence property are 

analyzed in [18-21]. Repeat the aforementioned two steps until 
the iteration stopping condition is satisfied. In our experiment, 
the iteration is stopped when the iterative index reaches a given 
maximum number K. 
 
3.3. Target DOA estimation and altitude calculation 
 
After the alternative optimization terminates, the real target 
direction can be easily obtained by one-dimensional searching, 
which can be represented as follows 

   ˆ ˆ=arg maxd kP


 γ  (14) 

where   ˆ kP γ  denotes the angular spectrum of ˆ
kγ  with 

 
1

Pp
d p

 


 . The target altitude th  can also be calculated with 

the final estimation d̂ , which can be expressed as 

 ˆ ˆ= sin 2t d d d e ah R R R h    (15) 

where dR  and ah  are the target range and the antenna height, 

respectively. eR  is the equivalent effective radius of the earth. 

Generally, 04 3eR R , where 0 6370R  km denotes the real 

radius of the Earth.  
The proposed low-angle target altitude finding algorithm 

can be summarized in Algorithm 1. 

Algorithm 1: Pseudocode for the proposed low-angle target 
altitude finding algorithm 
Input: Array measurement S, initial perturbation matrix 0Γ , 

maximum number of iterations K, k=0. 
Steps: 

1. Obtain the signal subspace vector y : 

  y S V1  

2. while k K  do 
3.       sparse coding:  

  2

12
ˆ = arg min +

s. t .

k

k




γ

γ y B Γ γ γ

Γ Γ
 

4.       dictionary updating: 

  2

12
ˆ = arg min +

ˆs.t .

k

k




Γ

Γ y B Γ γ γ

γ γ
 

5.       k=k+1 
6. end while 
7. Calculate the target altitude by (14) and (15). 

Output: Estimated target altitude ˆ
th . 

 
4. SIMULATION RESULTS AND MEASURED DATA 

VALIDATION 
 
4.1. Simulation results 
 
In this section, an ULA consisting of M=16 isotropic elements 
spaced half a wavelength apart is utilized, the wavelength is 

1  m. Some comparisons are made with the SSMUSIC algor- 
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Fig.2. RMSE estimation against SNR for ht=5km. (a) target angle, (b) target altitude. Fig.3. Navigational trace map.
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Fig.4. Results for measured data. (a) Comparison of target angle, (b) Comparison of target altitude. 

 
ithm [5] and the general RML algorithm [8]. Assume the real 

perturbational coefficients   =1

M

m m
  is defined as 

 = exp 180m mg mpj       with  0.2, 0.2mg U   and 

 10,10mp U  ,  U   denotes the uniform distribution. The 

radar height is 100ah  m, the target is located at 150dR  km 

with an altitude of 5000th  m. The vertical distance and the 

included angle are 4500th  m and 3   , respectively. Fig. 2 

shows the RMSEs of d  and th  via 500 independent Monte 

Carlo trials for each SNR. 
It is clear from Fig. 2 that the performances of the 

SSMUSIC algorithm and the RML algorithm are heavily 
decreased. This is mainly because that the assumed highly 
deterministic signal model produces mismatch in the complex 
terrain. Particularly, the proposed algorithm is able to 
distinguish the real target from its multipath under this 
condition. 
 
4.2. Measured data validation 
 
We use a real data that is measured by an experimental meter-
wave array radar located at a hilly terrain environment to verify 
the performance of the proposed algorithm in this subsection. 
The number of sensors of the radar is eighteen. The flight path 

of the target relative to the radar is shown in Fig. 3. Fig. 4 
shows the results of the measured data. The dashed line is the 
real target angle or height recorded by the global positioning 
system (GPS) located on the target. It can be observed that the 
results of the SSMUSIC algorithm and the RML algorithm 
have large estimation error, especially in the low-angle 
condition, while the proposed method can provide relatively 
accurate estimations of the target angle and the target altitude. 
These results indicate that our algorithm performs better for 
low-angle target altitude measurement in the complex terrain 
environment. 
 

5. CONCLUSIONS 
 
In this paper, we have addressed a novel low-angle target 
altitude measurement algorithm for meter-wave radar under 
complex terrain. The compressive sensing framework, 
combined with the alternative optimization and dictionary 
updating techniques, is adopted in our algorithm to mitigate the 
influence of the perturbed multipath. With a perturbation matrix 
being introduced, the dictionary atoms can be updated step-by-
step by dictionary updating technique to estimate the target 
altitude more precisely. Numerical results based on both 
simulated data and real data demonstrate the efficiency of our 
proposed algorithm under complex multipath environment. 
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