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ABSTRACT

This paper considers the problem of super-resolution with
positive constraints. By utilizing the concept of Modulus of
Continuity (MC), we propose a unified framework for analyz-
ing the robustness of super-resolution reconstruction in pres-
ence of noise, which is algorithm-independent and empha-
sizes the role of signal structures. In contrast to earlier works,
we show that incorporation of positive constraints improves
the scaling factor of MC and provides tighter upper bound
on the estimation error of any algorithm that exploits such
structure. The unified framework is further applied to ana-
lyze convex algorithms for positive super-resolution, and the
theoretical results are validated by numerical experiments. !

Index Terms— Super-resolution, Modulus-of-Continuity,
Positive Constraints, Noise Amplification, Universal Bounds.

1. INTRODUCTION

The problem of super-resolution is central to many imag-
ing applications such as astronomy [1], medical imaging
[2], microscopy [3] and radar [4]. The fundamental need
for studying super-resolution in these fields arises due to
the fact that the resolution of the captured image is always
limited by the physical measurement process. For example,
in microscopy [5, 6], the ability to identify closely located
molecules is restricted by diffraction limit of the optical
system. Mathematically, the point sources are blurred by
a kernel/point-spread-function (PSF) [7] which implies that
only low-frequency components of the underlying signal are
retained in the measurements [8, 9].

The theory of super-resolution with noisy measurements
was studied in the pioneering work by Donoho [9] and fur-
ther developed in recent works [8, 10] where total-variation
(TV) and /; norm based convex algorithms are used for super-
resolution reconstruction. The key contribution in [8, 10] is
an explicit construction of a dual polynomial (based on the
Fejer kernel) whose properties can be exploited to analyze
the performance of noisy super-resolution in line spectrum
estimation [11] and low-rank Toeplitz covariance estimation
[12].

Recently, the role of positive constraints on super reso-
lution was studied in [14] using a new notion of Rayleigh
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regularity. The positive constraint is straightforward in many
practical scenarios. For example, in microscopy, the mea-
surement is based on the number of photons collected and is
a positive quantity. Similarly, in magnetic resonance imag-
ing (MRI), the signal is known to be sparse and positive [13].
Using the same dual polynomial from [8, 10], the authors in
[14] propose an I; minimization framework with positivity
constraints. Given a sparse non-negative signal x € RY, if
the measurements retain only the n < N smallest DFT coef-
ficients of x, then the result in [14] shows that the estimation
error scales as SRF?, where SRF = % is known as the
super-resolution-factor. In another recent work [7], the author
considers the problem of robust recovery of positive streams
of spikes. Instead of constructing dual polynomials, the au-
thor imposes strong structural requirements on the admissible
blurring kernel. It should be noted that most existing analy-
sis of noisy super-resolution requires the true signal to satisfy
certain kinds of separation condition [8],[14].

In this paper, we consider the same problem setting as in
[14] where the goal is to reconstruct a sparse non-negative
discrete signal from low-frequency measurements. In con-
trast to previous works, our goal is to perform a unified anal-
ysis of positive super-resolution independent of particular al-
gorithms. To achieve this, we revisit the concept of Modulus
of Continuity (MC) [9, 15] which essentially provides an up-
per bound on the error of any algorithm, simply by leveraging
the structure of signals. We study the explicit role of posi-
tivity on the Modulus of Continuity and our results show that
the scaling factor of MC can be improved from O(N?) [9, 15]
to O(N?®) where N is the dimension of the underlying sig-
nal. This improvement is due to positive constraints imposed
on the desired signal, which is not considered in [9]. Finally,
we apply our new bound on MC to analyze several convex
algorithms for positive super-resolution, and demonstrate our
claims via numerical experiments.

2. PROBLEM FORMULATION
In this paper, we consider following discrete measurement
model
x*=0 (1)

where x* € RY is sparse with positive non-zero entries,
and w is the measurement noise. In the context of super-
resolution, the measurements y only retain low-frequency

y=Qx" +w
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components of the signal x*. Following the notations in [14],
Q is defined by

Q=FJA,.Fy )

where Fy € CV is given by [Fy]p; = \/iﬁe_ﬂ’””/]v,
—N/24+1 <k <N/2,0<1I<N-1andA, =

diag([A_n/2415" " > Any2]) with

1 n—_
A = ’ 20 02
k { 0, otherwise

We assume N is even and n is odd. Intuitively, Q only col-
lects n low-frequency coefficients of the DFT of x*. This
model popularly arises in discrete super-resolution problems
with positive constraints [14, 7, 16]. Let x# be any estimate
of x*. Our goal in this paper is to address following question:

f=_n=1 .  n-1

(Q): How to obtain a universal upper bound on the estimation
error |x* — x|y in terms of |w|s, that will be obeyed by
any algorithm? Can we improve this bound by constraining
X7 to be non-negative?

2.1. Modulus of Continuity and Universal Bounds

In order to address (Q), the authors in [9, 14] have used the
following notion of Modulus of Continuity (MC):

Definition 1. Let X*, X# < RY be classes of signals, |.|,
be the p—norm, and Q be a linear operator. Then, the modu-
lus of continuity is defined as

X1 —X
MC(Q,X*,X#,Z)) = sup M
X1 EXH xoeX* HQ(Xl - X2)HP
X1 #X2

3

The sets X'*, X# capture desired structures of the signal
of interest, such as sparsity, positivity etc. In estimation prob-
lems, X' often represents a class to which the true signal be-
longs, and X'# represents the feasible set to which the estima-
tor belongs. In most cases, either XY# = X* or X* < X#.
In order to see how MC fundamentally controls the estima-
tion error of any algorithm, we first need to define admissible
estimates as follows:

Definition 2. Consider the measurement model (1) with
|wl, < €and x* € X*. Any estimate x* of x* is said to be
admissible if

x* e X?, |y - Qx"[, <e

The quantity M C(Q, X*, X%, p) then provides an upper
bound on the error of any admissible estimate as follows:

Lemma 1. Consider the model (1) with |w|, < €, and sup-
pose x* is any admissible estimator of x*. Then,

Ix* = x*[, < 2eMC(Q, X%, X, p)

Remark 2.1. The Modulus of Continuity therefore de-
termines a universal upper bound on the estimation error
[x* — x#|,. The value of MC(Q, X*, X#, p) is algorithm-
independent and only depends on the choices of X*, X#, Q
and the choice of the norm. However, exact computation of
MO(Q,X*, X# p) is a challenging task, which was first
studied in the pioneering work by [9] in the context of super-
resolution reconstruction of spike signals from low-frequency
measurements and further developed in recent work on dis-
crete positive super-resolution [14]. We will review this
result by introducing the following class of signals that obey
a separation condition [14].

Definition 3. (Set of Signals Obeying Separation Condition)
Given N and n, the set Ay, is given by

k1l 4
) B
N'N n—1

where p(-,-) is a wrap-around distance function [8] such that
JorVuy, pe €[0,1]

p(p, p2) = min([pn — pol, |1 + 1 = pol, [p2 + 1 — paf)

Additionally, the set A;‘;p is given by

Agp = {xe CV | p( Vk # 1 € supp(x)}

Astp 2 {x € Ay, x = 0}

If we assume X* = X# = Asep, then the following result
provides an explicit upper bound on MC(Q, X*, X#,2) in
terms of n and V:

Lemma 2. [9, 14] Let X* = X# = Agep, and let Q be given
by (2). Then,

MC(Q7 Asep; Axep, 2) < C(’fl)N3 4)

where C(n) is a function of only n (independent of N) im-
plicitly defined in [9].

Given the measurement model (1), the goal of super-
resolution is to reconstruct the N DFT coefficiens of sparse
x* (or equivalently, the signal x*) from observations that only
preserve the lowest n < N frequency components. If we as-
sume that both the true signal and its estimate x* belong to
Agep (i.e., they satisfy the separation condition), then Lemma
2 and Lemma 1 show that given n, the estimation error grows
as O(N3).

However, in practice, it is difficult to develop algorithms
that can actually constrain x* to belong to Agep- 2 In re-
cent work [14], the authors developed an /; minimization
framework for super resolution reconstruction, where they
only constrained the estimate x* to be positive and devel-
oped algorithm-specific error bound (with respect to [; norm
of the error). Inspired by this work, we will develop a new
bound for MC(Q, X*, X#,2) where X* imposes minimum
separation as well as positivity on the true signal, whereas
X'# only imposes a positive constraint on x7. Our analysis
will show that this bound grows as O(NN?-%) and is therefore
tighter than (4).

2Partly because Agep is a non-convex set
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3. NEW BOUND ON MODULUS OF CONTINUITY
FOR POSITIVE SUPER-RESOLUTION AND
APPLICATIONS

Our new upper bound for the modulus of continuity is based
on a recent result from [12] for continuous Direction-of-
Arrival estimation. For any vector x, let Toep(x) denote
the Hermitian Toeplitz matrix with x as the first column.
Consider r* € C¥ such that

— 2 - (5)

where D < K, d; > 0,0; € [0,1] and

Toep(r

[17e—j2‘n’9i7 . ’e—j27r(K—1)9i]T

It can be easily seen that Toep(r*) > 0. We invoke the fol-
lowing result from [12]:

Theorem 1. [12] Let t* be given by (5), and v# € CK be any
vector such that Toep(r*) > 0. If the frequencies {0;}2
satisfy the separation condition

, 2
min p(6), m) > 7

and h > 128, then there exist positive constants ¢1, Cz, C3, Cyq
such that forh < k < K

|rk — Tk ‘ (6)
_ Gk emlk? D
< (01 + 2h + 3l12) (j/ﬁ + 1) |r}, —r7, H2
wherery = [rg,- - ,T;*l_l]T,I‘# = [7’#7 T a7'#_1]T-

Equipped with Theorem 1, the main result of this paper is
given by

Theorem 2. Let X*, X7 be chosen as

=A7T X#=Rfé{xeRN:x>O}

sep

Furthermore, let the matrix Q be given by (2). If n > 256,
the Modulus of Continuity is upper bounded as

<2+ (N

o(Q, &%, x#,2) —n+1)B(n,N) (D

where

9 2
_ Egﬂ'N 637T2N2 _ n+1
N) = 1
B(n, N) <Cl+n+1+(n+1)2 i\ —— +

Here ¢y, Co, C3, Cq are the same constants as in Theorem 1.

Proof. For Vx* € X*, Vx# e X#, x* # x#, Fyx* and
. N

F yx* are symmetric and we can define r*, r# € C2 ! as

0<i<

* * N
ri = [Fyx ]i+%—17 7’1# = [FNx#]H—%—lv b}

Since x*,x# > 0, it follows that[12]

Toep(r*) >0  Toep(r#) >0

Moreover r* has the form r* = ZHX o ( p)al (0r)x;,
where 6, = k/N,k € supp(x ) Slnce X* € Agp, this
implies p(0,0;) > —25. Hence, Theorem 1 applies (by
replacing K, h, and D with § + 1, 2L, and |x* o respec-
tively)
N
N —-n+1
2

2
+537T2N2 2 _ n+1+1
C
(n+1)?2 N8

where we use the fact that [x* o < 23

tion condition. Also note that

2
’f’ — T’
n+1

2

_ +627TN
C
T

Iy =17 2
2 2

owing to the separa-

|Fn(x" —x%)[3 < 2r* — %3
—n+1

N
<olrhn — 1 |2 (1 ;
2 p) 2

Moreover,

1Q(x" —x#)|3 = [AnFn(x" —x*)[3

50.))

=2frip —xlu 3 - (5 —)? = i —rEa 3
2 2 2 2
This implies
|x* —x#3 _ [Fn(x* —xF)F _ [Fa(x* —x7)|3
QE* —x#)F  |Qx*—x#)[3 ~ |r1,, —r%,, (3
2 2
N — 1
<2 <1 + #5@ N)>
thereby proving the theorem O

3.1. Comparison with Lemma 2

Our result in Theorem 2 significantly differs from the result
in Lemma 2 in the following ways:

e In Lemma 2, the signal classes X*, X # are identical,
while in Theorem 2, they are different. In particular,
X (the set to which the true signal belongs) contains
all non-negative vectors that satisfy separation condi-
tion, whereas X'# (the set to which the estimate be-
longs) simply contains all non-negative vectors. Such
distinction of X*, X# enables better analysis of practi-
cal estimation algorithms since it is difficult for an al-
gorithm to actually impose the constraint x# e Agep.

e The upper bound on MC in Lemma 2 is given by

C(Q, Aseps Asep, 2) < C(n)N? (8)
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On the other hand, Theorem 2 shows that

v/ N —nN?

C(Q, AL, RY,2 =) O

sep?

2) 5 O

When N is large (and n is fixed), Lemma 2 shows that
the upper bounded is O(N?) while Theorem 2 suggests
that this can be tightened to O(N?%%). This 0.5 im-
provement in the exponent with respect to [V is mainly
due to the introduction of positive constraints. To the
best of our knowledge, this improvement is the first re-
sult of its kind.

3.2. Unified Analysis of Specific Algorithms

In Lemma 1, we have shown that MC(Q, X*, X#,2) pro-
vides an upper bound on the estimation error of any algorithm
that produces an admissible estimate. To illustrate this further,
we study the following three convex problems to estimate x*
from the measurement model (1).

find z>0 st |y—Qz|2<e (Algo-F)
min |z; st |ly—Qz|2<e,z>=0 (Algo-ly)
min |y — Qzlz st z>=0 (Algo-i2)

Applying Theorem 2 and Lemma 1, we have the following
unified analysis of the preceding algorithms

Corollary 1. Consider the noisy measurement model (1) with

|wlla < e. Suppose the true signal satisfies x* € A}, Let
x}f, xf, xf be the optimal solutions of (Algo-F), (Algo-l,),

and (Algo-ly) respectively. If n > 256, we have

max{[x* = x} |2, [x* = x7 [, |x* = xF |}
< 264/2 4+ (N —n + 1)B(n, N)- (10)

4. NUMERICAL RESULTS

In this section, we present numerical results to demonstrate
our theoretical claims. We define the normalized empirical
root mean-squared error (NRMSE) of any estimator, averaged
over K Monte Carlo runs

NRMSE = Z ka_xk 3

‘XkHQ

where x; and x?f respectively denote the true signal and its
estimate. The support of x* is generated at random while sat-
isfying the separation condition. The non-zero entries of x*
are uniform random variables in the range (0.01,10). The
noise w is assumed to be zero-mean i.i.d Gaussian with stan-
dard deviation oy,. For each run, the parameter ¢ is chosen
such that true solution is feasible. The Signal-to-Noise Ratio
(SNR) is defined as

E|x*[3
E| w3

SNR = 10log

In Fig. 1, we compare the NRMSE of the three algorithms
proposed in Sec. 3.2, as a function of SNR and SRF =
N /n respectively. It can be seen that when SN R is large
enough, the NRMSE of different algorithms are almost order-
wise identical. In another word, in high SN R regime, the
underlying signal structures, rather than particular algorithms,
uniformly determine the estimation error. Fig. 1 also shows
that NRMSE is an increasing function of the super-resolution
factor %
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Fig. 1. NRMSE as a function of SNR and N/n re-
spectively. Results averaged over 1000 runs. (Up) N =
256,n = 32,D = 6 (Bottom) n = 32,D = 6, o = 0.5
,SNR = 35.22dB

5. CONCLUSION

In this paper, we analyzed the problem of super-resolution
where the desired sparse signal is also non-negative. We pro-
vided a universal upper bound on the estimation error of any
algorithm based on the idea of Modulus of Continuity (MC).
Our analysis is independent of specific algorithms and only
utilizes the underlying structure of the desired signal. We
show that incorporation of positive constraints strictly im-
proves the scaling factor of MC from O(N?) to O(N?®). Us-
ing this unified framework, we analyzed the performance of
three convex algorithms for super-resolution, and their perfor-
mances are further illustrated through numerical experiments.
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