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ABSTRACT
A class of detectors for cyclostationarity is introduced. These
detectors are based on the use of generalized coherence to measure
correlation among two or more collections of random vectors. The
generalized coherence framework allows any finite collection of
pertinent samples of the cyclic auto-correlation function estimates
formed from the measured signal data to be combined into the
detection statistic. The performance of this approach is demon-
strated and compared against other established cyclostationarity
detectors in both a cognitive radio scenario and a multi-channel
passive surveillance scenario.

Index Terms— Cyclostationarity, Coherence, Multiple-channel
detection

I. INTRODUCTION
A zero-mean random signal x(t) is said to be second-order

or wide-sense cyclostationary if its auto-correlation function,
C(t, t′) = E{x(t)x(t′)}, is periodic with some period T in the
sense that C(t+T, t′+T ) = C(t, t′) for all t and t′. The concept
of cyclostationarity models the subtle periodicity exhibited by many
natural and artificial processes where the signal itself is not periodic
due to random variation in components of the signal, but where the
statistics of the signal do exhibit periodicities [1], [2], [3]. There
has been renewed interest in cyclostationary detection in the past
few years in connection with cognitive radio [4], [5], [6].

In this paper, the problem of interest is that of detecting a
cyclostationary signal with cycle period T = 2π/α embedded
in wide-sense stationary (WSS) noise. Perhaps the most important
property of cyclostationary signals is that correlation exists between
the cyclostationary signal and an arbitrarily time-shifted copy of the
signal modulated by the cycle frequency. For a WSS signal, such a
correlation exists only at zero frequency. The two most important
classes of cyclostationarity detectors both exploit this correlation,
but in different ways. Detectors originating from the work of
Gardner [3], [7] use a single time lag, usually zero, and consider
the above correlation across one or more spatial channels to detect
cyclostationary. The detectors of Dandawate and Giannakis [8] use
the estimated cyclic correlation function across multiple time lags.
They show that the estimates are asymptotically jointly normal,
having non-zero mean in the presence of a cyclostationary signal.
This asymptotic distribution is used to construct a detection statis-
tic. Both classes of detector have been extended to the detection of
cyclostationary signals in multi-channel systems [9], [7].

An alternative approach to cyclosationary detection is based on
generalized likelihood ratio test (GLRT) or locally most powerful
invariant test (LMPIT) formulations [10], [11], [5]. These are
derived in the Fourier domain, asymptotically for large signal
length. These detectors are shown in [5] to have an advantage
over previous detectors for MIMO signals in which there is very
significant multipath mixing. The detectors in [5] are derived under
the assumption that the cyclostationary period is an integer multiple

of the sampling period and that a sufficient number of independent
realizations are available for processing. This means that when
one tests for a candidate cycle period, first the signal needs to
be re-sampled at a sample rate chosen to give an integer number
of samples per cycle period and then one needs to decide how
to partition the signal into “independent” realizations. The choices
made are de facto choices of sampling points for the cyclostationary
spectrum.

In [12] the use of the magnitude-squared coherence (MSC)
estimate was proposed as a measure of spectral correlation for
cyclostationary detection. It was also suggested, without further
development, that the generalized coherence (GC) statistic [13],
[14] might be used for poly-cyclic signal detection. The MSC
estimate has a long history as a statistic for the problem of detecting
common, or related, but unknown signal on two noisy channels
[15]. The properties of the MSC estimate and the performance
of detectors based upon it were studied extensively in the 1970s
and 1980s [16], [17]. Generalized coherence, which extends the
MSC concept to multiple-channel detection scenarios, received
considerable attention in the 1980s and 1990s and into the early
2000s. The symmetries and invariance properties of the GC statistic
were well studied during this period [18], [19], and the extent to
which the GC estimate is canonical with respect to a desirable set
of invariances and symmetries was examined in [14].

In this paper, the problem of detecting the presence of a
cyclostationary signal of cycle period T is considered within the
framework of generalized coherence detection. More specifically, a
set of K time-shifted versions of the signal xτj (t) = x(t+ τj) for
j = 1, . . . ,K is considered as one set of channels. These are then
to be compared with a second set of channels consisting of the first
set modulated by the cyclic frequency xατj (t) = x(t+τj)e

−iαt for
j = 1, . . . ,K. The GC statistic is designed to detect correlation
between the two sets of channels, while ignoring any internal
correlation within each set. Correlation between the two sets of
channels is evidence for a cyclostationary signal of cycle period
T . This idea generalizes directly to multi-channel signals, to the
use of multiple harmonics of the cycle frequency, and to poly-
cyclic signal detection. It should be noted that statistics that have
the structure of the generalized coherence statistics occur in [5]; in
that work, however, coherence between data vectors is only taken
over independent realizations.

The paper begins with a summary review of necessary back-
ground on cyclostationary processes and coherence detection. In
Section III, cyclostationary detectors are constructed based on
the GC statistic for the single-channel, multi-channel and multi-
harmonic cases. In Section IV, the performance of the new detector
is demonstrated in a small number of scenarios. A few closing
remarks are given in Section V.
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II. BACKGROUND

II-A. Cyclostationarity
A zero-mean random signal x(t) is said to be second-order

or wide-sense cyclostationary if its auto-correlation function,
C(t, t′) = E(x(t)x(t′)) is periodic with some period T 6= 0; i.e.,
C(t + T, t′ + T ) = C(t, t′) for all t and t′. The auto-correlation
function has the property that, for each τ ∈ R,

C(t, t+ τ) =
∑
n∈Z

Rn(τ)e
inαt.

In this expression, α = 2π/T is the cyclic frequency and the
functions

Rn(τ) =
1

T

∫ T/2

−T/2
C(t, t+ τ)e−2πint/T dt

are the cyclic auto-correlations. The corresponding Fourier trans-
forms of the Rn(τ) with respect to τ are the cyclic spectra.

Fundamental to almost all cyclostationary signal detection meth-
ods is the fact that

E

{
1

NT

∫ NT/2

−NT/2
x(t)x(t+ τ)e−iαtdt

}
= Rn(τ).

This leads to the usual estimate of Rn(τ)

R̂n(τ) =
1

N
〈x, xnατ 〉 =

1

N

N∑
k=0

xk[x
nα
τ ]k. (1)

In what follows, the shorthand notation xωτ will be used for the
time-shifted and frequency modulated versions of x,

xωτ (t) = x(t+ τ)e−iωt,

and [xωτ ]k will denote kth sample of this signal. Equation (1) implies
that when Rn(τ) is non-zero, then a non-zero value of 〈x, xnατ 〉 can
be used as evidence of the presence of a cyclostationary signal. A
similar story exists in terms of spectra, but it will not be discussed
here. If the time shifts are multiples of the sampling period `, then

R̂n(τ) =
1

N

N∑
k=0

xkxk+`e
−inαk.

The detection of cyclostationary signals entails two separate
problems. The first is the choice of sampling points; i.e., the
collections of values of (n, τ) at which estimates of Rn(τ) are
made. This choice depends on the particular class of cyclostationary
signals to be detected. Given any finite selection of sampling points,
Karhunen-Loève analysis enables construction of a continuum of
cyclostationary signals for which Rn(τ) is zero at all of the
sample points. This property would make the constructed class of
signals undetectable using the chosen samples, even though they
are cyclostationary.

The second and separate key aspect in construction of cyclo-
stationary detectors is how the estimates of the samples of Rn(τ)
should be combined to construct a detection statistic. In detectors
based on the work of Gardner et al. [3], [7], there is generally only
a single sample and question of combination does not arise. The
dominant method of combination in the literature is the one used
by Dandawate [8], [9], whose combined statistic is based on of the
asymptotic normality of the set of samples. In this paper a new
and quite different approach to the construction of cyclostationary
detectors is developed based on ideas from generalized coherence
detection.

II-B. Generalized Coherence
Consider two sets of K channels, each digitally sampled to

obtain signal vectors of length N . These two sets of K vectors
in CN may be regarded as the columns of two matrices X1 and
X2 ∈ CN×K . The generalized coherence between the two sets of
vectors is defined as follows. First, the columns of X1 and X2 are
orthonormalized by the transformation

X̃j = Xj(X
†
jXj)

−1/2 (2)

for j = 1, 2. Note that X̃†j X̃j = IK , the K ×K identity matrix.
The normalized Gram matrix of the combined set of 2K vectors
is defined in terms of the N × 2K matrix X̃ = (X̃1, X̃2) by

G̃(X1, X2) = X̃†X̃ =

(
I X̃†1X̃2

X̃†2X̃1 I

)
The generalized coherence is then defined in terms of G̃ as

γ2(X1, X2) = 1− det G̃(X1, X2).

The generalized coherence is a measure of the correlation of the
two sets of vectors X1 and X2, ignoring any correlations between
sets of vectors belonging to the same set. Denoting the subspace
of CN spanned by the columns of Xj by 〈Xj〉 the generalized
coherence is seen to be

γ2(X1,X2) =

K∏
j=1

cos2 θj

where the θj are the principal angles between the subspaces 〈X1〉
and 〈X2〉.

This construction can be extended to M sets of K channels,
where one is seeks to measure if there is some correlation between
any or all of the M sets, irrespective of any correlations that
may be present within any particular set. Write the MK signal
vectors sampled from the channels as the columns of M matrices
X1, X2, . . . , XM ∈ CN×K . For each m = 1, . . . ,M , the columns
of the matrix Xm are orthonormalized according to (2) to give X̃m.
Writing X̃ = (X̃1, . . . , X̃M ) the normalized Gram matrix is

G̃(X1, . . . , XM ) = X̃†X̃ =


I X̃†1X̃2 . . . X̃†1X̃M

X̃†2X̃1 I . . . X̃†2X̃M
...

...
. . .

...
X̃†M X̃1 X̃†M X̃2 . . . I


and generalized coherence is defined to be

γ2(X1, . . . ,XM ) = 1− det G̃(X1, . . . , XM )

As a detection statistic, the generalized coherence was introduced
into multi-channel signal detection as a extension of the widely
used MSC estimate [13]. The motivation for its introduction was
geometric. The MSC for two channels is the square of the cosine
of the angle between the signal vectors from the two channels.
This also one minus the square of the volume of the parallelogram
formed when the two signal vectors are normalized to unit length.
For M channels the general coherence, as introduced in [13], is one
minus the squared volume of the parallelotope formed by the unit
vectors corresponding to the M channels. When the data consists of
M blocks of size K, as just discussed, the angles between vectors
are replaced by angles between the K subspaces spanned by the
vectors in each of the M blocks.

Under the conditions that the entries the matrix X =
(X1, . . . , XM ) are zero-mean, complex normally distributed with
the rows of X being IID, the generalized coherence can be derived
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[20] as the generalized likelihood ratio for the following hypothesis
test on the MK ×MK covariance matrix R for the rows of X:

H1 : R is a general covariance matrix.
H0 : R is block diagonal with K ×K diagonal blocks.

In this context, the generalized coherence as a detection statistic is
defined and analyzed in [21] and [22].

III. CYCLOSTATIONARY DETECTION AS
GENERALIZED COHERENCE DETECTION

III-A. Single-channel detection
Begin by considering a digital signal x obtained from a single

channel. As discussed above, a basic component of almost all
cyclostationary signal detectors is the inner product between x and
xατ . Since the time and frequency shift operators are unitary (or
essentially unitary for sampled signals), a simple cyclostationarity
detector is given by the MSC

γ2(x,xατ ) = 1− |〈x,x
α
τ 〉|2

‖x‖2‖xατ ‖2
.

Now consider a set of K time-translated versions (“virtual chan-
nels”) of the signal x; i.e., Xτ = (xτ1 , . . . ,xτK ), clipped so that
the vectors are all the same length N . A second set of K channels
Xα

τ = (xατ1 , . . . ,x
α
τK ) consists of the same K channels modulated

by the candidate cyclostationary frequency α. Any correlations
between the first set of K channels and the second is evidence
of cyclostationarity, while correlation between pairs of vectors
which both lie in either one of the two sets is irrelevant for
assessing cyclostationarity. This suggests that cyclostationarity can
be detected using the generalized coherence statistic

γ2(Xτ , X
α
τ ) = 1− det G̃(Xτ , X

α
τ ) (3)

where, as in Section II-B,

G̃(Xτ , X
α
τ ) =

(
I X̃†τ X̃

α
τ

X̃α†
τ X̃τ I

)
.

Note that X̃α
τ denotes an orthonormalize after shift and modulation.

The generalized coherence statistic can also be written as

γ2(Xτ , X
α
τ ) =

K∏
k=1

cos2 θk

where the θk are the principal angles between the subspaces 〈Xτ 〉
and 〈Xα

τ 〉

III-B. Multi-channel detection
Now consider a multi-channel system with L spatial channels.

In this case, for a choice of time shifts τ1, . . . , τQ, the K = LQ
spatial channels and all of their time shifts are collected into Xτ .
The matrix Xα

τ consists of the columns of Xτ modulated by
the candidate cyclostationary frequency. The generalized coherence
statistic is then constructed as in (3).

III-C. Multiple Harmonics
The generalized coherence detector can also be extended to use

multiple harmonics of the cyclostationary frequency. For a set of
spatial and time-shifted channels Xτ , obtain modulated versions of
X
njα
τ for integers n1, · · · , nH . The multiple harmonic generalized

coherence is given by

γ2(Xτ ,X
n1α
τ . . . ,XnHα

τ ) = 1− det G̃(Xτ ,X
n1α
τ . . . ,XnHα

τ )
(4)

where

G̃ =


I X̃†τ X̃

n1α
τ . . . X̃†τ X̃

nHα
τ

X̃n1α†
τ X̃τ I . . . X̃n1α†

τ X̃nHα
τ

...
...

. . .
...

X̃nHα†
τ X̃τ X̃nHα†

τ X̃n1α
τ . . . I

 .

The coherence detector here detects any correlation across any of
the sets Xτ , X

n1α
τ , . . . , XnHα

τ .

IV. PERFORMANCE
This section provides an evaluation of the detection performance

of the proposed detector (4), labeled as “GC” in the figures. Its
performance is compared with the main existing techniques; i.e.,
those given in [5], [9] and [7]. In the figures, these are labeled as
“Ramirez et al”, “Lunden et al” and “Shell&Gardner”, respectively.
Two scenarios are considered in this section. The first is a cognitive
radio application which tests whether the received signal is cyclo-
stationary (CS) versus wide-sense stationary (WSS). The second
example is a multi-channel passive detection application where the
test is CS against Gaussian white noise (GWN). In both cases, the
signal has a QPSK modulation and, for fair comparison, the total
number of symbols use for all detector is the same. The detector
from Ramı́rez et al. [5] is implemented by cutting the signal into
15 snapshots each containing 256 symbols at each antenna.

IV-A. Example 1
This example considers a cognitive radio scenario as given by

Ramı́rez et al. in [5]. The received signal x(n) ∈ CM observed by
M sensors is given by

x(n) = (H ∗ s)(n) +w(n)

wherew(n) ∈ CM is additive correlated Gaussian noise. The noise
is generated by applying a moving-average filter of order 19.

The signal s(n) ∈ CM is a QPSK signal with rectangular
shaping and a symbol rate of 300 Kbaud. The MIMO channel
matrix H(n) ∈ CM×M is a Rayleigh channel without antenna
correlation and has an exponential power delay profile, with a
maximum delay of 24µs, and a delay spread of 6.24µs. The
sampling frequency is 1.2 MHz, which gives the cycle period of
4 samples. The channel and noise coefficients are Gaussian and
randomly generated in each Monte Carlo simulation. Note that the
detector described in [5] requires multiple realizations, which are
obtained by cutting the signal into 15 segments.

Fig. 1 shows the receiver operating characteristic (ROC) curves
for the scenario with SNR =−16 dB and M = 3 sensors. The
number of lags (τ) or delays used in the GC detector and the
detector from [9] is 8, which is two cycles of the cyclostationary
period under test. Only the fundamental harmonic is used by the
GC detector. As for the detector in [7], the technique conventionally
uses zero lag (τ = 0). However, for a complex phase coded signal,
|x(t)|2 is a constant and the detector is sampling in a place where
the cyclic auto-correlation is zero. This is remedied by using a lag
of 1 sample. As shown in the figure, the GC detector outperforms
the other detectors in this scenario.

Fig. 2 shows the results for the same scenario, but with the
coloured Gaussian noise replaced by white Gaussian noise (WGN)
of the same power. The performance of the detector in [5] is,
somewhat puzzlingly, much degraded with this change.

IV-B. Example 2
This example involves a signal from a multi-channel passive

surveillance system with an array of M receivers. The received
signal x(n) ∈ CM , observed by the M sensors is modeled as

x(n) = a(θ)s(n) + ν(n)
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Fig. 1. ROC curves for CS vs. WSS, M = 3, SNR = −16dB
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Fig. 2. ROC curves for CS vs. WGN, M = 3, SNR = −16dB

where a(θ) is the steering vector in the source direction θ. The
signal s(n) ∈ CM is a QPSK modulated signal with rectangular
shaping and a symbol period of 50 ns. It is assumed that the
receiver has 133 MHz bandwidth and its centre frequency is set
at 9.4 GHz. The data is digitally sampled at 8/3 × 108 samples
per second. This gives a cyclic frequency for the QPSK signal of
13.3333 samples/cycle. To apply the detector in [5], the data is
re-sampled by a factor 6/5 to give 14 samples/cycle. The receiver
noise ν(n) is taken to be distributed as CN (0, σ2IM ) and assumed
to be independent across the sensors.

Fig. 3 shows ROC curves for this scenario with SNR= −20
dB and the receive array consisting of M = 4 elements which
are spaced at a half wavelength for 18 GHz. In this example, 13
lags are used in the GC and “Lunden et al” [9] detectors, which
is approximately one cycle for the cyclic period under test. As in
Example 1, a time lag of 1 sample is used for the detector in [7].
As shown, in this scenario, the proposed detector outperforms all
other detectors. The detectors of Ramı́rez et al. [5] and Schell and
Gardner [7] perform rather poorly in this scenario at this level of
SNR.
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Fig. 3. ROC curves for CS vs. WGN, M = 4, SNR = −20dB

V. DISCUSSION AND CONCLUSIONS

Periodic correlation in the auto-correlation function of a zero-
mean process can manifest in the cyclic spectra Rn(τ) for every
pair (n, τ). But, as noted in Section II-A, given any finite set of
sample points in n and τ , it is possible to construct a wide-sense
cyclostationary signal for which Rn(τ) is zero at every sample
point in the set. Established cyclostationarity detectors base their
decisions on statistics that exploit a small number of fixed sample
points. They are not generic cyclostationarity detectors in the sense
that there are many cyclostationary signals that their design is not
suited to detect.

The class of detectors introduced in this paper, while also not
generic, improve this situation in two respects. First, the generalized
coherence framework will naturally accommodate incorporating
numerous sample points into the detection statistic, thus broadening
the sets of signals they can be designed to detect. Second, they
can capitalize on situations in which multiple sample points evince
cyclostationarity, which should improve detector performance. In-
deed, the results given in Section IV suggest that this structure
offers significant possibilities for performance improvement over
established methods. Note also that the ability to design detectors
that exploit particular sets of sample points opens the possibility of
customizing detectors to target signals with particular modulation
types.

Ongoing work is investigating statistical characterization of the
generalized coherence based detection statistics presented in this
paper. In particular, it would be highly desirable to obtain analytical
expressions for their probability distributions under “null hypothe-
ses” that model non-cyclostationary signals – ideally including both
white and WSS noise.
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