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Abstract—In this paper, target tracking constrained to
short-term linear trajectories is explored. The problem is
viewed as an extension of the matrix decomposition problem
into low-rank and sparse components by incorporating an
additional line constraint. The Cramér–Rao Bound (CRB) for
the trajectory estimation is derived; numerical results show that
an alternating algorithm which estimates the various components
of the trajectory image is near optimal due to proximity to the
computed CRB. In addition to the theoretical contribution of
incorporating an additional constraint in the estimation problem,
the alternating algorithm is applied to real video data and shown
to be effective in estimating the trajectory despite it not being
exactly linear.

Index Terms—Cramér–Rao bound, sparse methods, low-rank,
augmented Lagrange Multiplier method, object tracking.

I. INTRODUCTION
Low-rank and sparse structures have been ubiquitously

considered in many applications, e.g, pattern analysis as well
as image classification and reconstruction [1]–[5]. Background
subtraction can be viewed as a decomposition of a low-rank
matrix representing the background and a sparse matrix
consisting of the foreground objects [3]–[6]. In our prior work
[7], we introduced an additional linear constraint to these
background subtraction methods which enables the finding
of “lines” in videos. Exploiting application-unique, additional
structure often yields strong improvements in performance to
sparse/low-rank based methods (see e.g. [7]–[9]).

Target tracking is an important signal processing tool that
has been considerably examined over the years [10], [11], with
myriad of applications e.g., video-surveillance and navigation
of vehicles. Sparse and other structured representations have
been exploited to target tracking [3], [7], [12].

In [7], we extended the Robust Principal Component
Analysis (RPCA) model considered in [4], [5] by adapting
this low-rank and sparse framework to target tracking for
objects on nearly linear trajectories— motivated by the fact
that line segments arise in a lot of natural and synthetic objects.
Furthermore, some complex objects can be represented by
a combination of multiple linear features [13]; therefore
the proposed approach could be exploited in larger, more
sophisticated systems. The expected linear trajectory is
translated into additional constraints for the optimization.
Simualtion results showed superiority of the method proposed
in [7] over other background subtracion methods proposed in
[4], [5]. Herein, we derive a CRB to evaluate the potential
optimality of the method proposed in [7]. Our derivation
builds upon the work [14]–[18]. In particular, [14] presents the
computation of the CRB for the traditional RPCA problem.
In [19], the impact of multiple constraints is questioned

for certain low rank and sparse problems with a particular
structure. We examine the impact of selecting different subsets
of the multiple constraints and confirm that all constraints
are in fact needed to achieve the best performance. The main
contributions of this paper are summarized as follows:

1) We adapt the derivations in [14]–[16] to accommodate
the additional linear constraint. The computed CRB
predicts that employing the additional constraint will
reduce the mean-squared error as is evidenced by the
numerical results.

2) Numerical results of performance of the new augmented
Lagrange method of [7], which we called Line
Estimation via the Augmented Lagrange Multiplier
(LE-ALM), are shown to strongly improve over
previous background subtraction methods [4], [5] with
average improvement of 5 dB and 3.5 dB over [4], [5],
respectively, and more importantly are very close to the
computed CRB, average deviation of 1.2 dB, suggesting
the near-optimality of our method.

3) Different from [7], we apply our target tracking
algorithm to real video data, and observe that even for
imperfectly linear trajectories, the algorithm works very
well. We also show the efficacy of exploiting multiple
structures rather than using just a single structure, by
taking out one constraint and see how the performance
degrades accordingly.

The rest of this paper is organized as follows: The signal model
and optimization are introduced in Section II. The CRB for
background subtraction with linear trajectories is derived in
Section III. Simulation results are presented in Section IV.
Finally, Section V concludes the paper.

II. SIGNAL MODEL AND OPTIMIZATION PROBLEM
We expand the model of RPCA given in [4], [5], where:

X = L + S, X ∈ Rm×n, and L,S have the same size
of X . The matrix X collects the observed frames which
are vectorized column-wise. The matrix L is low rank and
captures the background information. The matrix S is sparse
and captures the motion of the object of interest. Fig. 1
provides a depiction of the signal model, wherein video frames
are vectorized and collected in the observation matrix X;
the object is represented by black pixels. The optimization
problem, that we proposed in [7], is as follows:

minimize
L,S,R

‖L‖∗ + λ1‖S‖2,1 + λ2‖RS‖∗

subject to X = L + S, RRT = Im, (1)

where R is a rotation matrix; R ∈ Rm×m, and Im is
m × m identity matrix. The nuclear norm of a general
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Figure 1. Signal model.

matrix A ∈ Rm×n is given as ‖A‖∗= Trace
(√

ATA
)

=∑min(m,n)
i=1 σi(A). The mixed l2,1 norm of a general matrix A

∈ Rm×n is given as ‖A‖2,1=
∑m
i=1

√∑n
j=1 a

2
ij .

The first constraint is the usual decomposition constraint
into low-rank and sparse components as in [4], [5]. The
second constraint guarantees that R is a rotation matrix.
We observe that if the line is appropriately “de-rotated,”
the resulting matrix RS will be rank one. Thus the line
structure is captured by the third term in the objective function.
To avoid confusion, it shall be mentioned that R is not a
rotation of space; but rather it is just a transformation matrix
that preserves energy before and after transformation; that is,
‖RS‖2F = ‖S‖2F . With simple mathematical matrix algebra,
we obtain the second constraint presented in (1).

For easier mathematical analysis, we define Sr as the matrix
S after rotating via R, i.e, Sr = RS, then the optimization
model, as proposed in [7], can be rewritten as follows:

minimize
L,S,R,Sr

‖L‖∗ + λ1‖S‖2,1 + λ2‖Sr‖∗

subject to X = L + S, RRT = Im,

Sr = RS. (2)

The above problem is solved in [7] via the method of
alternating Augmented Lagrange Multipliers (ALM) [20]–[23]
by decomposing the problem into four subproblems that are
solved iteratively. Herein, we provide the final estimators of
the four alternating terms. Further details are found in [7].

The final estimate of the matrix L is given by:

L̂ = UT 1
β
(W )ΣV T , (3)

where W = β−1M +X −S, UΣV T is the Singular Value
Decomposition (SVD) of W ; with M being the Lagrangian
multiplier corresponding to the first constraint, β is a positive
scalar, and Tα(·) is a soft thresholding operator defined as
Tα(x) = sign(x) max{|x| − α, 0}; for matrices, Tα(·) is
applied component-wise.

The final estimate of the matrix S is given by solving:

λ1

β
Λ sign(Z) + S − Z + RT (RS − E) = 0, (4)

where Z = β−1M + X − L, E = β−1V + Sr; with V
being the Lagrangian multiplier corresponding to the second
constraint, Λ = diag

(
‖Sj→‖−1

2

)
|S|, and Sj→ is the jth row

of S. Solving Equation (4) iteratively for S yields Ŝ.
The final estimate of the matrix R is given by solving:

2RRTR − (KT + K)R + RSST − EST = 0, (5)

where K = β−1N + Im; with N being the Lagrangian
multiplier corresponding to the third constraint, and use E

as defined before. Again, solving Equation (5) iteratively
provides the estimate R̂.

Finally, the estimate of the matrix Sr is given by:

Ŝr = UTλ2
β

(J)ΣV T , (6)

where J = β−1V + RS, UΣV T is the SVD of J ,
and Tα(·) is the soft thresholding operator we defined
previously. Combining these solutions yields the overall
LE-ALM algorithm.

III. CRAMÉR–RAO BOUND
In this section, we generalize the derivations presented in

[14]–[16] to obtain a new CRB for our problem. Herein, we
answer the question of how the CRB would change as we
go from the classical RPCA to more constrained RPCA that
exploits the special structure in line estimation.

We define y = A(L + S) + n; where and A is a linear
operator; A : Rm×n → Rp, and n is Gaussian-distributed
noise vectorN (0,Σ). Hence, using the matrix-vector notation,
with l and s defined as vec(L) and vec(S), respectively, we
have,

y = A(l + s) + n, (7)

where A ∈ Rp×mn is the matrix corresponding to the linear
operator A and vec stands for vectorizing a given matrix
column wise. We underscore that, one should not confuse the
vector l = vec(L) with the all ones vector. We define the set

Xl,s
def
= {(L,S) ∈ Rm×n×Rm×n : rank(L) ≤ r, ||S||0 ≤ s,

rank(S) = 1}. (8)

The first inequality in the definition of Xl,s represents
the low-rank condition, and the second inequality represents
the sparsity constraint. To enforce the line trajectory in the
structure of S, the third condition in Xl,s has been added.
In other words, the third condition is what distinguishes our
to-be-derived CRB from the CRB presented in [14]. The
rank-one condition presumes that the trajectory is already
in the obvious linear forms of a horizontal or vertical line.
Thus the uncertainty of finding the appropriate rotation, R,
is removed from this computation. In this way, our computed
CRB is a best-case scenario and should provide a further lower
bound than the CRB incorporating the estimation of R. We
will see in the numerical results (Section IV), that in fact,
the estimation of R results in limited uncertainty and in fact,
the idealized CRB is quite close to the achieved performance
where R must still be found. In our numerical results, random
lines are generated with arbitrary lengths and angles and the
auxiliary rotation is found via the LE-ALM algorithm. We
then average the mean-squared error over not only noise, but
also all of these possible realizations of the the trajectory. Thus
the closeness of the simulated algorithm performance to the
idealized CRB suggests near-optimality of our method.

Following the derivations in [14], there are no computational
differences when handling the L matrix, which captures the
low rank background information both in our work here and
that in [14]. Differences in the derivation arise in the handling
of the sparse component, S. Herein, S has the additional
constraint of being rank-one.
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Let L = U0Λ0V
T

0 be the SVD of L, where U0 =
[u1,u2, ....ur] ∈ Rm×r, Λ0 = diag([λ1, λ2, ....λr]) ∈ Rr×r,
and V0 = [v1,v2, ....vr] ∈ Rn×r. Furthermore, let U1 and
V1 be the unit orthogonal bases for the spaces orthogonal to
span{U0} and span{V0}, respectively. Then, we define

Ql = [V1 ⊗U0,V0 ⊗U0,V0 ⊗U1] ∈ Rmn×[(m+n)r−r2].

Due to Ql only relating to L, this Ql is the same as that
in [14]. We next define Qs ∈ Rmn×min(m+n−1,s) to be the
matrix whose columns are vec

(
emi en

T

j

)
, (i, j) ∈ S; where S =

supp(S) = {(i, j) ∈ [m]× [n] : Sij 6= 0}. This Qs is however
different from the Qs given in [14]. The change is developed
in a way that limits S to be rank-one matrix per our signal
model.

Theorem 1: For (L,S) ∈ Xl,s, the MSE for any locally
unbiased estimator (L̂, Ŝ) satisfies

MSEL,S ≥ tr
([

QT
l A

T

QT
sA

T

]
Σ−1

[
AQl AQs

])−1

, (9)

where Ql, Qs, and A are as defined before.
Corollary 1: Let Σ = σ2Ip. For any set Ω, let PΩ ∈

Rmn×mn denote a diagonal matrix whose diagonal entries
are ones for indeces in Ω and zeros otherwise. Let A be
the selection operator that observes the entries of L that are
randomly and uniformly selected, and indexed by Ω, and S is
a random and uniform subset of Ω. For RPCA, i.e, we have(

min(s,m+ n− 1)−N +
1

3

pN

p−min(s,m+ n− 1)

+
2

3

mnN

p−min(s,m+ n− 1)

)
σ2 ≤ CRB ≤(

min(s,m+ n− 1)−N + 3
pN

p−min(s,m+ n− 1)

+ 2
mnN

p−min(s,m+ n− 1)

)
σ2 (10)

with probability greater than 1− 10e
−c
ε2 . Furthermore, if p =

mn, then(
min(s,m+ n− 1)−N +

mnN

mn−min(s,m+ n− 1)

)
σ2

≤ CRB ≤
(

min(s,m+ n− 1)−N

+ 5
mnN

mn−min(s,m+ n− 1)

)
σ2 (11)

with probability greater than 1 − 10e
−c
ε2 ; where N = (m +

n)r − r2, c and ε are some constants.
Due to space limits, proofs of Theorem 1 and Corollary

1 are omitted. However, the key steps of the corollary are
as follows: First, we apply block matrix inversion formula to
the right hand side of (9). Second, we take advantage of the
assumptions provided in the corollary statement along with
the fact PS = Imn − PSc . Finally, we apply a concentration
result, that is given in [15], to one of the resulting terms to
ultimately achieve the above CRB bounds. The whole proof
is provided in extended version [24].

Examining our obtained CRB relative to the old CRB (the
one without considering the special structure of the line, in
[14], Equation (26) therein), the difference in the final result
is the term: min(m+ n− 1, s); instead of just s.; which is a
result of using a different Qs matrix. This means we select
(m+n)r− r2 + min(m+n− 1, s) linearly independent rows
of
[
Ql Qs

]
through the operation

[
AQl AQs

]
(see right

hand side of (9)); and this requires A ∈ Rp×mn with p being
sufficiently large to select (m+n)r− r2 + min(m+n− 1, s)
linearly independent rows of

[
Ql Qs

]
. This makes sense

since we now limit the choices of S to being not only sparse
but also rank-one, due to the line constraint, which renders
the choices to be smaller than those of considering sparsity
only. This effect of S, and accordingly Qs, propagates on the
derivations until we reach the bounds provided in (10) and
(11). For low sparsity level s, both CRBs approach each other
since our new obtained CRB min(m+ n− 1, s) is dominated
by s, and in turn reduces to the old CRB. On the other hand,
as s increases, the term m + n − 1 dominates, and therefore
gives lower values than the old CRB.

IV. SIMULATIONS
In this section, ground truth is denoted by X0, and the

estimated matrices as X̂; normalized recovery errors for L
and S, respectively, are defined as follows:

eL =
||L0 − L̂||2F
||L0||2F

, and eS =
||S0 − Ŝ||2F
||S0||2F

.

We do not consider errors in either R or Sr as they are
auxiliary matrices generated to regularize the optimization.
A. CRB Comparisons

In this subsection, we investigate the possible optimality
of our method by comparing to the CRB derived in Section
III. In this subsection, we are using synthetic data. The
noise instances are taken entry-wise from the matrix Z0 ∼
N (0, σ2). Matrices X,L0, S0, and Z0 are m × n = 120 ×
300. The matrix L0 is low-rank (with rank r = 5), and is
generated as L0 = UV T , where U is of size m × r, and
V is of size n × r. Both U and V are matrices with i.i.d
N (0, εσ2), where ε is chosen arbitrarily to make the singular
values of L0 are much larger than those of Z0 (we set ε to 10).
The entries of S0 are independently distributed, each taking
on value 0 with probability p = 0.8, and object values are
generated with probability 1−p = 0.2, with an arbitrarily fixed
preselected value that represents the intensity of the object.
Each run of a simulation (total of 105 runs) has randomly
generated velocities drawn from a discrete uniform distribution
[-10,10]. To generate a linear trajectory, the equation that
describes the motion from position (i, j) to position (k, l)
with velocity vkl,ij is as follows: (k, l) = (i, j) + vkl,ij .
This equation is translated into two equations for x and y
axes, respectively, as follows: k = i+ vkl,ij | cos(γkl,ij)|, and
l = j+vkl,ij | sin(γkl,ij)|; where γkl,ij = tan−1

(
(l− j)/(k−

i)
)

. The direction of the motion (positive or negative) is
considered in the sign of vkl,ij . The matrix X is normalized:
X̄ = X/||X||2F . The SNR is defined as ||X̄||2F /σ2; as a
result, the noise variance is then 1/SNR.
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Figure 2. Comparison of ALL techniques with CRB for different
SNR values.

Figure 3. Frame 136. Figure 4. Frame 136 with
noise (SNR=30 dB).

Figure 5. Ideal Scenario. Figure 6. SNR = 30 dB.
Fig. 2 shows the NMSE error for the matrix X for

our method in comparison with both background subtraction
methods as well as the derived CRB. From now on, we denote
the method of [5] as Efficient Background Subtraction based
on Matrix Decomposition (EBS-MD) and [4] as Background
Subtraction based on Matrix Decomposition (BS-MD), where
the abbreviation BS is to emphasize the fact that both methods
are based on background subtraction; however, as they do
not exploit the side information of object tracking on a line
as we do, we expect performance improvement relative to
these schemes, as seen in Fig. 2. Moreover, LE-ALM is
the closest to the derived CRB, with only a deviation of 1.2
dB, on average. Furthermore, motivated by the work in [19]
that using multiobjective optimization with multiple structures
can do no better than exploiting only one of the structures,
we take out the sparsity objective

(
i.e. λ1‖S‖2,1

)
from the

multiobjective optimization given in (1), and see how the
performance is accordingly affected. As can be seen from
Fig. 2, the performance; however, degrades, verifying that
considering multiobjective optimization, in regard to our line
estimation problem, does better than exploiting only a single
structure.
B. Real Data

Herein, we apply our method to real video data from
[25], [26]. In [25], [26], there is a video of two moving
boats following nearly linear trajectories. The following

pre-processing was necessary in order to apply our method.
Specifically, we extracted the segment between seconds 51 and
72, which provides an approximate straight line of movement;
see [27]. This part of the video is converted into a sequence
of 641 frames (images). Each frame is of size 741 × 1920.
Since we are detecting a single object; that is represented by
the large boat, the contribution due to the other small boat has
been removed from the frames.

Hence, we have now frames of size 741 × 900. We used
10 frames. So, we have matrices of size (741× 900)× 10 =
6669000. These matrices are the matrices used in simulations
to estimate the matrices L and S. Since these matrices are
too much large to display as images, what we do display as
images are the ten images added together in one matrix of size
741×900. To help the reader visualize the process, frame 136
is shown in Fig. 3.

We tested our technique for different values of synthetic
noise represented through the parameter SNR (as defined in
previous subsection). For convenience, Fig. 4 shows the noisy
version of frame 136 for SNR=30 dB. Fig. 5 represents the
ideal scenario; whereas Fig. 6, as an example, is the estimated
sequences for SNR=30 dB. The white objects represent the
moving object for the ten frames stacked on top of each other.
Table I summarizes the NMSE of the recovered background
matrix and the recovered sparse object matrix for various SNR
values. As can be seen from the table, the proposed LE-ALM
method provides strong estimation results and it has very small
error even at low SNR values.

Table I
NMSE for L and S for various SNR values

SNR (in dB) eL eS
10 5.97× 10−5 4.83× 10−4

20 3.92× 10−5 2.21× 10−4

30 1.69× 10−5 1.24× 10−4

40 0.85× 10−5 0.62× 10−4

50 0.013× 10−5 0.18× 10−4

V. CONCLUSIONS
In this paper, we considered our previous extension of

structured estimation beyond low rank and sparsity to finding
“lines” in matrices. This generalization has been applied to
the tracking of a single object in a real video that has
been sampled and viewed as a sequence of multiple images.
Our method of estimation has showed its superiority over
state-of-the-art background subtraction methods that do not
exploit the additional structure. Moreover, a new CRB, that
matches the new presented problem, has been derived. We
investigated that our estimation error is very close to the
computed CRB with, on average, only deviation of 1.2 dB,
suggesting the near-optimality of our proposed method.
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