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ABSTRACT

Celestial transient radio sources have attracted considerable scien-
tific interest recently, but their investigation is hampered by the fact
that they cannot be effectively detected by commonly used radio as-
tronomy imaging techniques. One significant obstacle to observ-
ing radio transients is intermittent terrestrial radio frequency inter-
ference, which can appear as a transient signal. In this paper we pro-
pose two schemes for the detection of transient sources. The first is a
generalized likelihood ratio test designed for terrestrial interferences
that appear in the near field region. The second is a modification of
the first one, designed for sources whose steering vector is known to
be in the array manifold, such as astronomical sources. Both of the
proposed detectors are based on two consecutive sample covariance
matrices computed by the array, and they have the desirable property
of a constant false alarm rate. We provide a simple analysis of the
proposed method as well as a computer simulation. The computer
simulation results suggest that the proposed detectors outperform the
detector that is currently used by the low frequency array (LOFAR)
radio telescope processor.

1. INTRODUCTION

A short duration, non-periodical celestial radio signal was detected
for the first time in 2007 [17], and fewer than 20 other such fast radio
bursts (FRB) have been detected since then [19]. The study of FRBs
and their origin is of great scientific interest because they are con-
sidered to be a product of exotic astronomical events. It is likely that
only a small fraction of FRBs incident on Earth are detected, since
current radio telescopes and imaging methods are not adapted for a
large field of view, a high sensitivity to transients, or full time cov-
erage. Enormous efforts are being made to develop new telescopes,
processing hardware and algorithms that will provide better tempo-
ral, spatial and frequency coverage for the detection and accurate
analysis of transient astronomical signals [18].

Similarly to the detectors in [15] and [16], the detectors developed
in this work are also applicable to cognitive radio, passive radar,
passive acoustic sensors and any other multi-sensor receiving sys-
tem that can benefit from detecting short duration, spatially localized
Gaussian signals that are embedded in colored Gaussian noise.

The sensor (specifically, a radio telescope designed for the search
of astronomical transients) is assumed to generate a sequence of
sample covariance matrices (SCM), where each SCM corresponds to
a distinct set of vector samples collected during a time frame of con-
stant length [20] [21]. The SCM integration interval is short enough
so that the statistical properties of all the received signals, except for
transients, can be assumed to remain constant during two consecu-
tive time frames. The signal of interest is expected to be a Gaussian
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point source that appears and disappears during one integration in-
terval. We further assume that all the signals, both static and tran-
sient, are zero-mean Gaussian, and that the occurrence of transients
is rare, so that there may be at most one transient point source in a
single SCM. The work presented here focuses on detecting a spa-
tially correlated Gaussian signal using a given pair of consecutive
SCMs. The problem of detecting spatially correlated signals using
one or more SCMs has been addressed in works for various statis-
tical signal and noise models. In [14] and [15] it is assumed that
the noise is spatially uncorrelated, or that its spatial covariance is
very small compared to the covariance of the desired signal. In [13]
and [3] generalized likelihood ratio test (GLRT) detectors are devel-
oped for the detection of an unknown deterministic signals that are
restricted to some given subspace, and embedded in spatially corre-
lated Gaussian noise. In [13] the noise covariance matrix is assumed
to be known up to some scaling factor and in [3] the availability of a
secondary dataset that contains only background signal is assumed,
which is similar to the settings of our work. The difference lies in the
signal model taken — whereas Bandiera et al. assumed a determin-
istic, unknown signal whose steering vector (SV) is bound to a given
subspace, we assume a Gaussian signal that may appear anywhere in
Cq , where q denotes the number of antennas in the array (or in some
array manifold whose elements span Cq).

We consider the problem of transient detection for two types of
signal models that differ in terms of the prior knowledge about the
set in which the transient SV is expected to be. In the structured SV
model, it is assumed that the transient SV is restricted to the array
manifold. The detector developed for this model is adequate for the
detection of far field transient radio sources. The unstructured SV
assumes no knowledge about the source SV. The detector developed
for this model is appropriate for cases where the array is not cali-
brated or the transient signal originates from the near field region of
the array (which may span a very large area for a radio telescope
with long baselines).

The detectors developed for both signal models use the maximum
value of a real function known as the ”pixel likelihood function” as
the test statistic. In the unstructured case, this maximal value can
be reduced to the largest joint eigenvalue of two random Wishart
matrices. The asymptotic distribution of this largest joint eigenvalue
as given in [11] forH0, together with the results of [10] [8] [1] can be
used for the theoretical analysis of the detectors’ performance when
the input dataset is large and when both the dataset and the number
of elements in the array are large.

2. PROBLEM FORMULATION

An array of q antennas receives two consecutive sample sets, each of
which consists ofN i.i.d. q-dimensional zero-mean complex normal
vectors, that will be denoted by {rj,i}Ni=1, j = 1, 2. The covariance
of the vectors of the first set will be referred to as the background
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covariance matrix (BCM) and denoted by R∗, and the covariance of
the vectors of the second set depends on the true hypothesis. Under
H0 it is the same as the covariance matrix of the first set, i.e. R∗, and
under H1 which states that a transient source with SV a∗ and power
σ2
∗, appeared during the second interval, a rank-1 Hermitian matrix

of the form σ2
∗a∗a

H
∗ is appended to the BCM, so that the distribution

of the samples under both hypotheses can be written as follows

r1,i ∼ CN(0, R∗), i = 1, ..., N (1)

r2,i ∼

{
CN(0, R∗) H0

CN(0, Q(R∗,a∗, σ
2
∗)) H1

, i = 1, ..., N (2)

where CN(µ,Σ) denotes the proper complex vector Gaussian dis-
tribution with mean µ and covariance Σ, and

Q(R,a, σ2) ≡ R+ σ2aaH (3)

Because under both hypotheses, each set of measurements {r1,i}
and {r2,i} is modeled as a set of i.i.d. zero-mean complex Gaussian
vectors, the two SCMs R̂1 and R̂2 defined as

R̂k =
1

N

N∑
i=1

ri,kr
H
i,k, k = 1, 2 (4)

are a sufficient statistic for estimating the unknown parameters, and
therefore contain all the information that can be used when deriving
the estimators and the test statistic. The observation set Y input to
the detector is represented as an ordered pair of the SCMs

Y ≡ (R̂2, R̂1) ∈ Sq+ × Sq+ (5)

where Sq+ denotes the set of q × q positive definite (PD) matrices.
The probabilities of detection and false alarm are given by Pd =

Pr(Ĥ(Y) = H1|H1, θ1) and Pfa = Pr(Ĥ(Y) = H1|H0, θ0) re-
spectively, where Ĥ(Y) ∈ {H0, H1} denotes the decision of a
detector as a function of the measurements and Pr(A|Hi, θi), i ∈
{0, 1} denotes the probability of A when the true hypothesis is Hi
with a corresponding set of parameters θi which will be detailed in
subsection 4.1.

We assume without loss of generality that

R̂1 − R̂2 /∈ Sq+ (6)

which implies that a vector x may always be found such that
xH(R̂2 − R̂1)x ≥ 0, since otherwise, the energy received from
any direction during the second sampling interval is lower than what
was received during the first interval and any reasonable detector will
decide H0 (“no transient signal”) in that case.

2.1. Structured and unstructured problem settings

We consider two different problem settings: the “structured SV” and
“unstructured SV” models. In the structured model it is assumed that
the transient source is located in the far field region of the array and
that the array manifold, denoted by S, is known and contained in the
unit sphere of Cq , denoted by Cq ≡ {x ∈ Cq, ‖x‖2 = 1}.

In the unstructured model no prior knowledge about a∗ is as-
sumed and the search domain is Cq . The derivation of the detectors
will be done separately for each of the cases.

A practical detection scheme may use these two detectors sequen-
tially. In the first detection stage, the unstructured detector is applied
with a low threshold level (for high probability of detection (Pd)

and a high false alarm rate (FAR)) in order to detect any suspicious
signal, and then uses the SV estimation to only pass celestial sig-
nals to the next stage. In the second stage, the structured detector,
which outperforms the unstructured detector for celestial sources, is
used to confirm or reject the first stage detections. This way, terres-
trial interferences are filtered out from the detection process, and the
computation demands are relaxed compared to a detection scheme
that passes all the data to the structured detector.

3. OVERVIEW OF EXISTING DETECTORS

3.1. The clairvoyant detectors

The detectors that will be presented next are unrealizable since they
require information that is not available; hence they will be only
used as upper bounds and points of reference for the achievable per-
formance of the GLRT based detector, and to better understand its
properties.

Suppose we had prior knowledge that under H1 the transient SV
would be a∗ and that under both H0 and H1 the true BCM is R∗. A
uniformly most powerful (UMP) [12] test statistic for this detection
problem would be

Ta∗(Y) = m(a∗, R∗, R̂2) (7)

where the function m(x, A,B) : (Cq ×Sq+×Sq+)→ R, defined as

m(x, A,B) ≡ xHA−1BA−1x

xHA−1x
≥ 0 (8)

will be referred to as the ”pixel-likelihood value”.
An appealing feature of this statistic is that under H0 its distribu-

tion depends solely on N .
If the BCM were known but not the transient SV, we would use

(27) or (30) depending on the signal model, and replace R̂1 with
R∗ in the input arguments of m(·, ·, ·), leading to the simple largest
eigenvalue detector for the unstructured model.

3.2. Dirty image subtraction detector

The transient detection algorithm currently used in the LOFAR pro-
cessing pipeline [20] [22] takes three consecutive SCMs {R̂i, i =

1, 2, 3} and detects transients in the middle one (i.e. R̂2) using the
following test statistic

TDI(R̂1, R̂2, R̂3) = max
a∈S

aH
(
R̂2 −

1

2
(R̂1 + R̂3)

)
a (9)

This is practically a pixel-wise second order differentiator applied to
the sequence of dirty images (DI) synthesized from the sequence of
SCMs. The actual processing pipeline of LOFAR is more compli-
cated than the simple detection formula that was presented here, but
the other processing stages that were omitted are not related to the
topic of this paper.

4. GLRT DETECTOR FOR THE UNSTRUCTURED MODEL

For the unstructured SV problem, closed form expressions are de-
rived for the maximum likelihood (ML) estimators of the unknown
parameters under H0 and H1, for the maximal log-likelihood val-
ues and for the corresponding GLRT statistic. A brief outline of the
derivation and the final results will be given in following subsections.
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4.1. The log-likelihood functions

To derive the GLRT in the unstructured case, we first compute the
log-likelihood functions under each hypothesis. Under H0 all the
observations are drawn independently from the same distribution;
with the only unknown parameter being the BCM θ0 = {R}, the
log-likelihood of a given set Y as a function of the BCM R ∈ Sq+ is

log p(Y;H0, R) = −2N
(
q log π + log |R|+ tr

(
R−1M̂

))
(10)

where | · | and tr(·) denote the determinant and trace operators, and

M̂ ≡ 1

2N

2∑
k=1

N∑
i=1

ri,kr
H
i,k =

1

2

(
R̂1 + R̂2

)
(11)

Under H1, the set of 3 unknown parameters is θ1 ≡
{
R,a, σ2

}
and the log-likelihood of Y as a function of θ1 is

log p(Y;H1, θ1) =−N
(

2q log π + log |R|+ log |Q(R,a, σ2)|

+ tr
(
R−1R̂1 +Q(R,a, σ2)

−1
R̂2

))
(12)

4.2. Parameter estimation under H0

The matrix R that maximizes (10) for a given observation set Y
is M̂ (as proved in [2]). The maximum log-likelihood obtained by
substituting M̂ → R in (10) is (omitting a constant term)

log p∗(Y;H0) ≡ max
R∈Sq

+

log p(Y;H0, R) = −2N log |M̂ | (13)

4.3. Parameter estimation under H1

For the derivation of the ML estimator of θ̂1, we need to maximize
(12) with respect to 3 parameters of which σ2 is a scalar, a is a q-
dimensional vector and R ∈ Sq+. This maximization problem will
be solved successively. We first estimate σ2 given a and R. Then
we estimate a given the ML estimate of σ2 for each R. Finally we
estimate R given the conditional estimates of a and σ2:

σ̂2(Y;R,a) ≡ arg max
σ2≥0

p(Y;R,a, σ2) (14)

â(Y;R) ≡ arg max
a∈Cq

p(Y;R,a, σ̂2(Y;R,a)) (15)

R̂(Y) ≡ arg max
R∈Sq

+

p
(
Y;R, â(R), σ̂2(R, â(R))

)
(16)

Next, we present the power estimator. Solving (14) (assuming
that a ∈ Cq) yields a ML power estimator that depends on the BCM
and SV estimators

σ̂2(Y;R,a) =
(
aHR−1a

)−1 (
m(a, R, R̂2)− 1

)+
(17)

where (x)+ ≡ max{0, x} and m(·, ·, ·) is defined in (8).
Plugging this result back into (12), we obtain the log-likelihood

under H1 as a function of 2 parameters - the BCM and the SV
(omitting the same constant that was omitted in (13) and denoting
β(R,Y) ≡ 2N(log |R|+ tr(R−1M̂)))

log p(Y;H1, R,a) = −β(R,Y) +Nh
(
m(a, R, R̂2)

)
(18)

where the function h : (0,∞)→ (−∞, 0] is defined as

h(x) = − (− log x+ x− 1)+ (19)

This is a continuously differentiable decreasing function over R.
Maximizing (18) w.r.t. a gives the SV dependent estimator

â(Y;R) = arg max
a∈Cq

m(a, R, R̂2) (20)

which can be identified as the generalized eigenvector of the matrix
pair W = (R−1, R̂−1

2 ) that corresponds to the largest joint eigen-
value of this pair, which will be denoted by λW,max.

Maximizing the log-likelihood w.r.t. the power and SV yields

log p(Y;H1, R) = −β(R,Y) +Nh (λW,max) (21)

Maximizing (21) w.r.t. R gives the BCM ML estimator

R̂(Y) = arg max
R∈Sq

+

p(Y;H1, R) = M̂ − λY,1 − 1

2
vY,1v

H
Y,1

(22)
where λY,1 is the largest eigenvalue of the pair Y = (R̂2, R̂1) (de-
fined in (5)) and vY,1 is defined by

R̂−1
1 vY,1 = λY,1R̂

−1
2 vY,1 , vHY,1R̂

−1
1 vY,1 = 1 (23)

Plugging (22) into (20) we obtain the SV ML estimator that de-
pends only on the observations

â(Y) = â(Y; R̂(Y)) = ‖vY,1‖−1vY,1 (24)

and by plugging (22) and (24) into (17), and using the normalization
given in (23), we obtain the power estimator

σ̂2(Y) = ‖vY,1‖2 (λY,1 − 1) =
λY,1 − 1

â(Y)HR̂−1
1 â(Y)

(25)

where we use the inequality λY,1 ≥ 1 that follows from (6), to omit
the (·)+ operator.

The maximal log-likelihood underH1 is obtained by plugging the
BCM estimator (22) into (21)

log p∗(Y;H1) = 2N
(

log
1

2

(
λ
− 1

2
Y,1 + λ

1
2
Y,1

)
− log |M̂ |

)
(26)

The unstructured GLRT statistic

The GLRT statistic for the case of the unstructured SV is obtained
by subtracting the maximal log-likelihood under H0, given in (13)
from the maximal log-likelihood under H1 (26)

Tus(Y) = 2N log
1

2

(
λ
− 1

2
Y,1 + λ

1
2
Y,1

)
(27)

Since λY,1 ≥ 1 and this function is monotonic for λY,1 ≥ 1, an
equivalent test statistic to Tus(Y) would be

T ′us(Y) = λY,1 = max
a∈Cq

m(a, R̂1, R̂2) (28)

Using this test statistic, the GLRT detector can decide whether a
transient appeared during the second time interval by computing the
largest joint eigenvalue of the given SCM pair and comparing it to a
constant chosen to provide a desired false-alarm rate.

The computation of the largest joint eigenvalue in (28) can be
performed by applying one of the procedures described in [7] to the

3441



composite matrix L−1R̂2L
−H , where L is the cholesky decomposi-

tion of R̂1 [5].
It can be shown that under H0, the distribution of m(x, R̂1, R̂2)

is invariant to x and R∗, and under H1 its distribution depends on x
and on the signal-background-ratio (SBR), which is defined by

σ̄2
∗ ≡ σ2

∗a
H
∗ R
−1
∗ a∗ (29)

5. EXTENSIONS TO THE STRUCTURED MODEL

The detection algorithm for the unstructured model assigns a pixel
likelihood value given by m(a, R̂1, R̂2) to every SV a ∈ Cq , and
makes its decision based on whether the maximum pixel likelihood
value crossed some threshold or not.

A natural extension of this detection algorithm to the structured
SV model would result in a detector that takes the maximum pixel-
likelihood among S instead of Cq . The new test statistic would be

TS(Y) = max
a∈S

m(a, R̂1, R̂2) (30)

A alternative extension of the GLRT test statistic for the struc-
tured model is based on the generalized Rayleigh quotient [9] of
(R̂−1

1 , R̂−1
2 ), defined as the following function of a

r(a, R̂1, R̂2) ≡ aHR̂−1
1 a

aHR̂−1
2 a

(31)

Observing that maxa r(a, R̂1, R̂2) = λY,1, and that the maximiz-
ing vector in the noiseless case (N → ∞) is a∗, we introduce the
following test statistic for the structured model

TMVDR(Y) = max
a∈S

r(a, R̂1, R̂2) (32)

which is the maximal pixel-wise ratio between the MVDR image
[4] synthesized from R̂2 and the MVDR of R̂1; hence, it will be
referred to as the MVDR detector, and r(R̂1, R̂2,a) as the MVDR
ratio. As will be shown in section 6, the maximum pixel-likelihood
and MVDR detectors perform almost identically.

Under H0 the distributions of all 3 test statistics: T ′us(Y), TS(Y)
and TMVDR(Y) depend solely on the receiving array parameters N
and q. Hence, the proposed detectors with a fixed threshold possess
the constant false alarm rate (CFAR) property. Under H1, for given
N and q, the SBR is a sufficient statistic for all three.

5.1. Asymptotic distributions

For large datasets (N →∞) the statistics of both the pixel likelihood
(8) and the MVDR ratio (31) functions can be approximated by the
following univariate normal distributions

H0 :

{
m(a, R̂1, R̂2)

r(a, R̂1, R̂2)

}
a∼ N

(
1,

2

N

)
(33)

H1 :

{
m(a∗, R̂1, R̂2)

r(a∗, R̂1, R̂2)

}
a∼ N

(
σ̄2
∗ + 1,

2(σ̄2
∗ + 1)

2

N

)
(34)

where a∼ denotes asymptotic distribution. The proof of these asymp-
totic distributions is complicated and will be provided in the full ver-
sion of this paper.
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Fig. 1. simulation results

6. SIMULATION RESULTS

We first outline the simulation scheme. For a given parameter set
θ1 = {R∗,a∗, σ2

∗}, two large sets of statistically independent ran-
dom SCM pairs (realizations of Y) were generated according to the
statistical model given in section 21. The first set simulates the of
SCM pairs measured under H0 where θ0 = {R∗}, and the second
set corresponds to H1 with θ1. The test statistics of the various de-
tectors, which are given in (7), (9), (28), (30), (32), were computed
for the simulated SCM pairs2. Using the simulated test statistics, the
Pd of the tested detectors was estimated as a function of the Pfa, for
the simulated parameter set. This process was repeated to obtain es-
timations of the receiver operating characteristic (ROC) for different
SBR values and transient source locations, with fixed BCM.

The important simulation parameters are: Random array with q =
60, maximum baseline of about 60 wavelengths, integrating N =
5·104 vector samples for each SCM, integration interval of 1 second.
BCM is composed of the 50 brightest stationary celestial sources
taken from [6] + uniform uncorrelated receiver noise 13dB below
the power of the brightest star. Transient source was positioned in
one of 9 equally spaced locations in the sky, simulated SBR values
ranged from -25dB to 7dB.

The simulation results are summarized in Figure 1. The Pd de-
picted in the graph is the lowest out of all the Pd values that were
measured in the various transient locations when Pfa = 10−4. It
should be noted that the only detector whose performance was tran-
sient position dependent was the DI subtractor. It is evident from the
simulation results that the detectors proposed in this paper, outper-
formed the DI subtractor significantly. Using the clairvoyant unre-
alizable bound we can see that for high Pd our detector is at most
1.5dB away from the optimal performance.

In practice, the MVDR ratio detector may be preferred since it
requires less matrix multiplications for each matrix pair.

7. CONCLUDING REMARKS

In this paper we proposed two new detectors detecting radio astro-
nomical transient signals. We showed that these detectors outper-
form the currently used detectors for this problem. We also provided
asymptotic results for the large N distribution of the test statistics.

1The simulation is more realistic than the analytical model in the sense
that differences in stationary source formation between the two sampling in-
stances due to earth rotation are taken into consideration.

2To obtain a fair comparison, we used a variation of the DI difference
detector that takes the DI image of (R̂2 − R̂1) as input.
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