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ABSTRACT

A method is proposed for estimating the source signal and
its direction of arrival (DOA) in this paper. It is based on
ML estimation of the transfer function between microphones
combined with the EM algorithm for a Gaussian Mixture
Model (GMM), assuming that the signal is captured at each
microphone with delay corresponding to the traveling of
sound and some decay. By this modeling, search for the max-
imum log-likelihood in the ML estimation can be realized
simply by eigenvalue decomposition of a properly designed
matrix. Computer simulation results show that the proposed
method achieves SDR of greater than 10 dB regardless of am-
plitude difference between microphones and DOA estimation
error of less than 8 degrees, on average. It is also shown that
it can maintain high performance in various conditions.

Index Terms— ML estimation, Gaussian Mixture Model,
Rayleigh quotient, sparseness, time-frequency masking

1. INTRODUCTION

A method of extracting the source signal of interest among
other competing signals such as interfering speech and am-
bient noise is a crucially important objective of audio sig-
nal processing. Estimation of the direction of arrival of the
source signal is also important for event detection on var-
ious scales from our daily lives to the infrasound radiated
by natural events such as volcano explosion, earthquake, and
tsunami. Therefore, for those tasks, various algorithms using
multiple microphones have been proposed [1, 2]. It is often
assumed that microphones are placed sufficiently close that
the amplitude of the signal captured by each microphone is at
the same level and that there is only an arrival time difference
between them.

Specifically emphasizing speech sparseness under this as-
sumption, Izumi et al. proposed a Blind Source Separation
(BSS) method for a reverberant environment based on ML
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estimation combined with time-frequency masking [3]. An
important shortcoming of the method is that it must use brute-
force searching to execute ML estimation of the arrival time
difference between microphones.

Maruyama et al. further developed the method and pro-
posed an analytical update rule for Time Difference of Arrival
(TDOA) estimation [4]. In this method, by modeling the de-
lay as a function not only of the source direction but also of
the frequency, an analytical update rule for the delay param-
eter is derived theoretically by differentiating the auxiliary
function. The obtained function has a similar shape to that
of a von Mieses distribution [5]. The method achieved dras-
tic reduction in computational time by avoiding brute-force
searching but still including an iteration process to execute
the EM algorithm and assuming the fixed level difference be-
tween microphones.

Inspired by an earlier work [4], the present study takes
another approach by which it is presumed that the signal is
captured at each microphone not only with delay, but also
with decay. This presumption is validated because applica-
tions we are considering are not only those for speech but
also infrasound monitoring, where the signal has a very low
frequency so that the microphones need to be placed distant
for DOA estimation and the signal is expected to decay while
traveling [6]. By this new modeling, the maximization of the
log-likelihood can be realized directly by eigenvalue decom-
position rather than by application of an EM algorithm.

2. CONVENTIONAL METHOD

We assume that the signal is sparse in the time-frequency do-
main. The time-frequency representation of the signal cap-
tured at the microphones is

xf,t = bf,kSf,t,k + Nf,t, (1)

where Sf,t,k represents the time-frequency representation of
the source signal, k is the index of the source, and f and t
respectively denote indices of the frequency and the time. If
there is only phase difference and no level difference between
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the microphones, then the transfer function bf,k can be mod-
eled as

bf,k =
[
1 exp(j2πfδk)

]T
, (2)

where δk is the arrival time difference for source signal k. In
addition, an additive noise Nf,t is assumed to be present: its
covariance matrix is represented as V f . Under the assump-
tion of the diffused noise, it is represented by

V f = σ2
f

[
1 sinc(2πfκ)

sinc(2πfκ) 1

]
, (3)

where κ is the ratio of the distance between microphones to
the speed of sound. Let θ = {σ2

f , δk, Sf,t,k} be a param-
eter set to estimate. Then, the conditional probability of the
observed signal becomes [7]

p(xf,t|k, θ) =
1

πσ2
f |V f |

exp

(
− 1

σ2
f

NH
f,tV

−1
f Nf,t

)
. (4)

Moreover, the auxiliary function of the problem is

Q(θ|θ′) = E[log p(xf,t; θ)|θ′]

=
∑
f

∑
t

∑
k

mf,t,k log p(xf,t|k, θ)p(k|θ), (5)

where θ′ is the parameter set in the previous iteration and
mf,t,k is time-frequency mask updated by

mf,t,k = p(k|bf,t,k, θ′) =
p(k|θ′)p(xf,t|k, θ′)∑
k p(k|θ′)p(xf,t|k, θ′)

. (6)

The maximum likelihood estimate of the parameter is ob-
tained as

δk = arg max
δk

Q(θ|θ′). (7)

A shortcoming of the method in [3] is that brute-force search-
ing is required to seek the optimum δk in calculating (7).

Assuming that the delay parameter δk is a function not
only of source but also of frequency, Maruyama et al. de-
rived a new update rule. Under this assumption, the likelihood
function is represented by

p(xf,t|k, θ) =
1

πσ2
f |V f |

· exp(C)

· exp

{
2|ξf,t,k||Sf,t,k|
σ2
f (1− φ2f )

cos(ψSk
− ψξk − 2πfδf,k)

}
, (8)

where φf = sinc(2πfκ), ξf,t,k = xR,f,t−φf (xL,f,t−Sf,t),
ψξk and ψSk

respectively denote phases of ξk and Sk. Also,
C is independent from δf,k. By substituting (8) into (5) and
by setting ∂Q

∂δf,k
= 0, the update rule is obtained as

2πfδf,k = arctan

∑
tmf,t,k|ξf,t,k||Sf,t,k| sin(ψSk

− ψξk)∑
tmf,t,k|ξf,t,k||Sf,t,k| cos(ψSk

− ψξk)
.

(9)

In addition to solving the ambiguity in phase, the following
correction is applied:2πfδf,k ← 2πfδf,k + π for δf,k < 0, ∂2Q

∂δ2f,k
≥ 0

2πfδf,k ← 2πfδf,k − π for δf,k > 0, ∂2Q
∂δ2f,k

≥ 0
.

(10)

3. PROPOSED METHOD

3.1. ML estimation of transfer function

We model the time-frequency representation of the observed
signal as

xf,t = bf,kSf,t,k + Nf,t, (11)

where

bf,k =
[
aL,f,k exp(j2πfδL,f,k) aR,f,k exp(j2πfδR,f,k)

]T
.

(12)

This representation of the observed signal (11) is the same as
(1), but the transfer function bf,k of (2) is replaced by (12) to
include signal level difference between microphones. Param-
eter sets {aL,f,k, aR,f,k} and {δL,f,k, δR,f,k} respectively
represent the signal decay and delay. This new model allows
the transfer function to be any arbitrary vector. Under the
assumption that Nf,t is a complex Gaussian distribution of
mean zero and covariance matrix V , the log likelihood can
be represented as

log p(xf,t|δ·,f,k)

= C − (xf,t − bf,kSf,t,k)HV −1f (xf,t − bf,kSf,t,k)

= C − xHf,tV
−1
f xf,t +

|bHf,kV
−1
f xf,t|2

bHf,kV
−1
f bf,k

, (13)

where
C ≡ − log(π)− log |V f |. (14)

In this derivation,

∂ log p(xf,t|δ·,f,k)

∂Sf,t,k
= 0 ⇔ Sf,t,k =

bHf,kV
−1
f xf,t

bHf,kV
−1
f bf,k

(15)

is used for the unknown parameter Sf,t,k. Maximization of
the log-likelihood can be deduced to maximization of the
third term of (13) because it is the only term that is dependent
on δ·,f,k.

Because a covariance matrix V f is a Hermitian, so is its
inverse V −1f . Therefore, it can be decomposed by the spectral
theorem for Hermitian matrices [8] as

V −1f = UfΛfU
H
f = WH

f W f , (16)

where
W f ≡

√
ΛfU

H
f (17)
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and Λf is a diagonal matrix with diagonals consisting of
eigenvalues of the matrix V −1f , whereas columns of ma-
trix Uf are eigenvectors for the corresponding eigenvalues.
Moreover, defined cf,k = W fbf,k, the third term of (13) can
be rewritten as

|bHf,kV
−1
f xf,t|2

bHf,kV
−1
f bf,k

=
|bHf,kW

H
f W fxf,t|2

bHf,kW
H
f W fbf,k

=
(bHf,kW

H
f W fxf,t)(x

H
f,tW

H
f W fbf,k)

bHf,kW
H
f W fbf,k

=
cHf,kDf,tcf,k

cHf,kcf,k
, (18)

where

Df,t ≡W fxf,tx
H
f,tW

H
f = yf,ty

H
f,t, (19)

yf,t ≡W fxf,t =
√

ΛUH
f xf,t. (20)

The right-hand side of (18) is a form of Rayleigh quotient.
Therefore, its maximum value is obtained as the largest eigen-
value of the matrix Df,t [9]. Letting c̃f,t be the correspond-
ing eigenvector for the maximum eigenvalue of Df,t, then
the ML estimate of the transfer function bf,k can be obtained,
using (16), as

bf,k = (WH
f W f )−1WH

f c̃f,t = V fW
H
f c̃f,t. (21)

It is further normalized by the component of one microphone
to obtain the arrival time difference between the microphones
as

bf,k ←
[
1 (aR,f,k/aL,f,k) exp {j2πf(δR,f,k − δL,f,k)}

]
.

(22)
The transfer functions obtained by (22) are a mixture of all
sources for the specified time frame. Therefore, it should be
further segregated into each source component using, for ex-
ample, a clustering algorithm.

3.2. Clustering of signal components

Under the assumption of speech sparseness, each time-
frequency component belongs to only one source signal.
Define the arrival time difference ϕf,k as

6 bf,k = 2πf(δR,f,k − δL,f,k) ≡ 2πfϕf,k (23)

and that of time frame t as ϕf,t,k. A subset {ϕf,t,k|fL ≤
f ≤ fH} is used in the clustering based on the EM algo-
rithm for the Gaussian mixture model (GMM). It is also pos-
sible to execute the GMM estimation frame-by-frame so that
it can cope with time-varying DOAs, but it will worsen the
EM algorithm convergence. Frequency is bounded between
{fL, fH} for good stability because, for low frequency, a
slight phase difference might cause a large deviation in the

arrival time difference because of the division by frequency.
For high frequencies, because an ambiguity in phase might
occur, fH needs to be set to 1/(2∆t), where ∆t is the max-
imum traveling time between the microphones. The number
of Gaussian distributions should be set to the assumed num-
ber of sources plus one. This plus-one source is for ambient
noise, which is expected to be omnidirectional and to have
a distribution with a mean of zero. By performing EM al-
gorithm for GMM, a set of estimates for mean and standard
deviation {µk, σk} is obtained. The obtained means of the es-
timated Gaussian distributions are then sorted to resolve the
permutation problem. Those for standard deviation are also
permuted accordingly.

Using the estimated Gaussian distribution as probability,
the time-frequency mask to xf,t for each source signal is ob-
tained as

mf,t,k =
1√

2πσk
exp

{
(ϕf,t,k − µk)2

2σ2
k

}
/max
f,t,k

[mf,t,k].

(24)
Consequently, the source signal is reconstructed as

Sf,t,k = mf,t,k

bHf,kV
−1
f xf,t

bHf,kV
−1
f bf,k

. (25)

This form is the same as in [4] but using (22) and (24) instead
of (2) and (6), respectively, for bf,k and mf,t,k.

4. PERFORMANCE EVALUATION

4.1. Conditions

Computer simulations were conducted under the conditions
described below. Two microphones were placed with distance
of 10 cm. The directions of speakers were set to a 30 and 60
deg incident angle and 2 m distant from the center of the mi-
crophones, as portrayed in Fig. 1. The signal is captured by
the microphones at a sampling rate of 16 kHz, with quantiza-
tion of 16 bits. Amplitude of the signal for one microphone
is gained by (1 − β) where β = 0.0, 0.1, 0.2, 0.3, 0.4.
Japanese speech uttered by five male and five female speak-
ers was used. Spoken sentences differed among speakers. The
averaged duration of the speech segments was 5.2 s. A white
Gaussian noise signal was added to the speech signal to form
the captured signal. Its level is adjusted appropriately to have
a 10 dB or 20 dB signal-to-noise ratio (SNR) at the fixed-
amplitude microphone rather than the one gained by (1− β).
Finally, after the captured signal is segmented into frames us-
ing a Hanning window of 1024 points with 50% overlap, it
is then transformed into the frequency domain using Discrete
Fourier Transform (DFT) to obtain its time-frequency repre-
sentation.

Computer simulations were conducted only for a single
source case because our primary interest is in estimating both
DOA and the source signals quickly. Although Blind Source
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Separation (BSS) is the main purpose of [4], we used it as the
conventional method because it has abilities of source sig-
nal estimation, DOA, and noise reduction, irrespective of the
numbers of sources.

������

����

Fig. 1. Configuration of speaker and microphone positions.

4.2. Results

Performance in estimation of the sound source is evaluated
in terms of the Signal to Distortion Ratio (SDR) [10]. Fig. 2
presents the results. In Fig. 2(a), circles are for the input SNR
of 10 dB. Upside-down triangles are for 20 dB. The incident
angles of 30 dB and 60 dB are represented respectively by
solid and dashed lines. Error bars represent standard devia-
tion. It is common for both methods that higher SDRs are
obtainable for higher input SNRs. Results show that SDRs
of the conventional method for the incident angle of 30 deg
were approximately 6–9 dB. This result is comparable to ex-
periment results described by [4]. As shown in Fig. 2(b), the
SDR of the conventional method decreases as β increases,
whereas that of the proposed method remains constant irre-
spective of the attenuation ratio. This is one benefit of the
proposed method, which introduces additional parameters for
the signal level.
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Fig. 2. SDR for different conditions in (a) source position
and input SNR and the (b) signal level difference between
microphones.

The drastic decrease in SDR for the larger incident an-
gle on the conventional method shown in Fig. 2(a) was at-
tributable the traveling time between two microphones, which
exceeded the sampling rate.

Fig. 3 presents simulation results related to incident angle
estimation. Other conditions are the same as Fig. 2. Only
those of the proposed method are shown because the con-
ventional method models the arrival time difference, which
is used to calculate DOA, as a function not only of source di-
rection but also frequency. It is therefore difficult to ascertain
a specific DOA directly for each source. It is apparent from
Fig. 3(a) that whiskers become shorter as the input SNR in-
creases and that errors become smaller as the incident angle
increases. Regarding other parameters, neither Fig. 3(a) nor
Fig. 3(b) shows any remarkable tendency. Therefore, results
suggest that the proposed method can achieve robust DOA
estimation in various conditions.
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Fig. 3. Estimation error of incident angle for different condi-
tions in (a) source position and input SNR, and (b) the signal
level difference between microphones.

The outliers suggest that a large estimation error might
have occurred. The EM algorithm for GMM estimation some-
times did not converge within the specified maximum number
of iterations, which might be the reason underlying the large
estimation error. In addition, some bias exists in the resul-
tant estimates of source DOA. A possible reason is that some
isotropic error which occurred in the phase estimation pro-
duced non-isotropic error in the arrival time difference be-
cause of the division by frequency.

5. CONCLUSION

Assuming that both time and level differences exist among
signals captured by multiple microphones, a new method is
proposed for estimating both DOA and the source signal. The
method is based on the ML estimation of time difference for
each time-frequency component and EM algorithm for GMM.
Computer simulations revealed that the method can function
under various conditions. However, it is somewhat heuristic
to regard a Gaussian distribution obtained by EM algorithm
directly as a probability of the source signal. Development
of a theoretical rule to ascertain the optimal time-frequency
mask under the assumption considered here is left as a topic
for future research.
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