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ABSTRACT
Suppose that the energy made available to a sensor network at
the beginning of a time slot is proportional to the success of the
network inferential task during the previous slot. And further,
assume that such energy is to be apportioned to charge the in-
dividual sensors, such that the more energy one sensor receives,
the better it does its job. Then, the information gathered by the
network in the long run consequently obeys a multiplicative rule,
which enables us to adapt some results from portfolio theory to
design the optimal apportionment. Two regimes emerge, one in
which the expected value of the long-run information is key and
all the energy is assigned to the “best” sensor, and another – more
tricky – where the expected logarithm of the long-run informa-
tion matters, and the solution is given by Cover’s log-optimal
apportionment.

Index Terms— Wireless sensor networks, energy harvesting
sensors, Cover’s log-optimal portfolio.

1. INTRODUCTION

One of the main bottlenecks of inferential sensor networks is the
energy constraint [1–4], which motivates a mounting interest in
networks with energy-harvesting sensors [5–8]. Sensor networks
with mobile agents provide several advantages with respect to
classical architectures where the fusion center is static [9–11].
The idea that the mobile agent, aside from collecting data,
could also serve as energy charger for the sensors has been
recently proposed, see [12, 13] and references therein. Hierar-
chical structures in which the system is composed of several
sub-networks are also very popular for several advantageous
characteristics [14].

Accordingly, we consider an inference-making system con-
sisting of several sub-networks to which the energy is supplied
externally by a supervisor at regular intervals of time. Using this
energy, in each time slot each sensor network performs its infer-
ential task and communicates the result of the inference to the
supervisor, in the form of some information; we assume that the
amount of information gathered by the sensor network can be
precisely measured1. Then it makes perfect sense that, at the be-
ginning of the (n + 1)-th time slot, the supervisor rewards the

∗P. Willett was supported by NPS via ONR contract N00244-16-1-0017.
1. . . as per Shannon.

sensor network with an amount of energy En+1 proportional to
the amount of information In gathered by the sensor network
in the previous slot. This way, the more the sensor network per-
forms efficiently its inference task (i.e., the larger is In), the more
energy will be made available to it in the next time slot (the larger
will be En+1), which provides a virtuous mechanism for a parsi-
monious resource allocation, allowing competition2 among dif-
ferent sensor networks.

Each sub-network is a sensor network with a mobile agent,
made of remote sensors tasked with inference whose output is a
measurable quantity. The task requires energy that must be sup-
plied (maybe wirelessly) by the agent, which is in turn charged
with En unit of energy by the supervisor at the beginning of the
n-th time slot. Thus, for the sensor network there is a total en-
ergy En to be spent in the n-th time slot, which is apportioned
among the S sensors of the sensor network by the mobile agent.
The more energy the agent apportions to sensor s, the more effi-
cient is the sensor inferential task; but the amount of information
that the sensor gathers is also related to the actual operational
characteristic (e.g. noise/disturbance levels), modeled as a ran-
dom quantity, that it experiences during the time slot. Therefore,
the amount in(s) of information gathered by sensor s during
the n-th time slot is proportional to the energy en(s) provided
to it, multiplied by a random variable Xn(s), which character-
izes statistically the sensor.

Information is additive: at time slot n the sensor network
made of S sensors gathers In =

∑S
s=1 in(s) units of information

and therefore En+1 ∝ In is the energy at disposal of the sensor
network for the time slot n + 1. We ask: How the agent should
allocate the energy En+1 among the S sensors of the network?
What fraction of the energy should be supplied to what sensor?

Winner-take-all is one possibility: The best sensor, – say,
the one for which E[Xn(s)] is maximum – is recharged with
En+1 units of energy and nothing is left for the others. This is an
aggressive energy apportionment strategy, but is this extremely
meritocratic approach giving no chances to all but one sensor the
best? One can argue that if the runner-up sensor is, on the av-
erage, only infinitesimally less good than the best, some fraction
of En+1 should be granted to it: statistical fluctuations of Xn(s)

may make the runner-up better than the best “in-expectation”. At
the other extreme, the fully performance-unaware approach is to

2Rather brutal capitalism.
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allocate 1/S-th of En+1 to each of the S sensors. Should one ig-
nore at all the differences (if any) among sensors? It makes little
sense. And, of course, between these extremes, plenty of other
approaches could be conceived.

The theme of this work is to provide rigorous answers to the
described energy allocation problem, which also reveals analo-
gies with Cover’s portfolio optimization [15, Chap. 16].

2. FORMALIZATION AND MAIN RESULTS

Let S be the number of sensors in the considered sensor net-
work. Let In =

∑S
s=1 in(s) be the total information gath-

ered by the sensor network, and in(s) the information gath-
ered by sensor s thanks to the en(s) units of energy that have
been provided to it at the beginning of time slot n. Suppose
that in(s) = a en(s)Xn(s), where a is a positive dimen-
sional constant (bits/Joule, assuming that information is mea-
sured in bits, and energy in Joule), and where Xn(s) is a
real-valued dimensionless non-negative random variable. Let
Xn , [Xn(1), . . . , Xn(S)]. The vectors X1,X2, . . . are IID
(independent and identically distributed) with common CDF
(cumulative distribution function) F (x). This CDF character-
izes the S sensors (note that we are not assuming statistical
independence among these sensors), and is assumed known and
constant. The case of time-dependent distributions is not covered
by our analysis.

To execute its n-th inferential task, sensor s is charged with
an amount of energy given by en(s) = pn(s)En, where pn(s)

is the fraction of the total energy En transferred from the agent
to node s, at the beginning of the n-th time slot. The vector
pn , [pn(1), . . . , pn(S)] verifies

pn(s) ≥ 0,

S∑
s=1

pn(s) = 1. (1)

The class of all such vectors will be denoted by P . Finally,
En = b In−1 – the total energy – is proportional to the infor-
mation In−1 gathered by the sensor network during stage n− 1.
Here b is a positive (say, in Joule/bits) constant.

With no loss of generality, let ab = 1 and I0 = 1. We have

In = a

S∑
s=1

en(s)Xn(s)

= En a

S∑
s=1

pn(s)Xn(s) = In−1

S∑
s=1

pn(s)Xn(s)

= In−1 Rn(pn) =

n∏
j=1

Rj(pj), (2)

where Rn(pn) ,
∑S
s=1 pn(s)Xn(s) = pn · Xn. Our goal is

to find the best sequence p1, . . . ,pn, maximizing the long-run
(N →∞) total information

JN (p1:N ) ,
N∑
n=1

n∏
j=1

Rj(pj) (3)

gathered by the system. Since X1,X2, . . . ,Xn are IID, we limit
the analysis to sequences of constant energy apportionments, i.e.,
p1 = p2 · · · = pn, which entails no loss of generality, see [16].

Accordingly, for notational convenience, we will often omit
the subscripts n, and simply write, e.g., R(p) = p · X. Let us
introduce the following definitions

η(p) , E
[

1

R(p)

]
, (4)

µmax , max
s=1,...,S

E[X(s)], (5)

and two apportionment strategies that deserve special attention:

p∗ = arg max
p∈P

E[logR(p)], (6)

p̄ = arg max
p∈P

E[R(p)]. (7)

Note that p∗ is Cover’s log-optimal portfolio for the multiplica-
tive wealth model [15]. The main result is now stated.

THEOREM

(a) Suppose E[logR(p)] > 0. Then:

lim
N→∞

1

N
log JN (p) = E[logR(p)], (8)

and the limit is maximized by p∗. If η(p) < 1 the convergence
in (8) is a.e.; if η(p) ≥ 1 (and V[logR(p)] is finite and nonzero)
the convergence is in probability.
(b) Suppose E[logR(p)] ≤ 0. Then:

lim
N→∞

JN (p) = J∞(p), a.e. (9)

If µmax < 1, the random variable J∞(p) is finite a.e., and its
expectation is maximized by p̄:

E[J∞(p)] ≤ E[J∞(p̄)] =
µmax

1− µmax
.

If µmax ≥ 1, the random variable J∞(p) is not necessarily finite
a.e. �

PROOF Space limitations prevent us from providing the detailed
proof. The basic idea behind part (a) with η(p) < 1 is that
each summand of

∑N
n=1

∏n
j=1Rj(pj) grows exponentially and

therefore the sum is dominated by the last term
∏N
j=1Rj(pj).

Then, the result follows straightforwardly by the strong law of
large numbers. The case η(p) ≥ 1 exploits the fact that J∞ =∑∞
n=1

∏n
j=1Rj(pj) has the same distribution of R′(J∞ + 1),

where R′ is an independent copy of the random variable Rj .
This allows us to exploit known results on the theory of per-
petuities [17, 18] about the convergence in distribution of a nor-
malized version of J∞, which is then manipulated by probability
tools to obtain the final claim. Similar tools (results on perpetu-
ity random process combined with asymptotic probability tools)
apply to part (b). The detailed complete proof is given in [16].�

The above theorem states that if E[logR(p∗)] > 0, then there
exist energy allocation vectors p ∈ P such that

JN (p) ≈ exp{N E[logR(p)]}, (10)
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Fig. 1. Exponential rate of information versus the number N of
time slots, for the first experiment. Cover’s log-optimal portfolio
gives the best energy apportionment. The winner-take-all policy
(mean-opt) is much worse than the log-optimal, and even worse
than the uniform apportionment.

namely, JN (p) grows exponentially with rate E[logR(p)],
which is maximized by p∗. Conversely, if E[logR(p∗)] ≤ 0,
then there exists no energy allocation vector p ∈ P such that
JN (p) grows exponentially. Still, JN (p) converges a.e. to a
limiting random variable J∞(p), which, if µmax < 1, has finite
expectation

E[J∞(p)] ≤ µmax

1− µmax
(11)

The energy apportionment p̄ achieves the maximum in this case.

3. COMPUTER EXPERIMENTS

The applications of the theorem presented in the previous section
requires the computation of the vectors defined in (6) and (7).
Computing the latter is straightforward. The former in general
cannot be found in closed form, but the following algorithm pro-
vides a simple and accurate numerical solution.

Algorithm 1: Pseudocode to compute p∗

k ← 0; p(0)(s)← 1/S,∆(k)(s) =∞, s = 1, . . . , S;
while maxs log ∆(k)(s) ≥ ε do

∆(k)(s)←
〈

X(s)
R(p(k))

〉
, where 〈·〉 denotes a numerical

approximation of the expectation (e.g., via Monte Carlo);
p(k+1)(s)←− p(k)(s) ∆(k)(s), s = 1, . . . , S;
k ←− k + 1;

The rationale of the algorithm is explained in [19], where
it is shown that, given ε > 0 as input, if the empirical aver-
age 〈·〉 would be replaced by the true expectation E[·], then the
apportionment vector in output, say p(k), has the property that
E[logR(p(k))] is ε-close to the true E[logR(p∗)].

We now illustrate the power of the previous theorem by com-
puter experiments, in which the long-run behavior of the infor-
mation gathered by the sensor network is simulated. For compar-
ison purposes, aside from the best energy apportionment vector
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Fig. 2. Expected value of the information JN (p) versus the num-
ber N of time slots, for the second experiment. In this case the
winner-take-all energy apportionment (mean-opt) achieves the
best performance.

predicted by the theorem, we also show the case of the other allo-
cation shown in (6)-(7), and the case in which energy is “blindly”
distributed uniformly to the sensors. In the latter case the al-
location vector is denoted by u , [1/S, . . . , 1/S]. In the ex-
periments we consider a sensor network made of S = 6 sen-
sors and assume that Xn(s) are independent (but not identically-
distributed) random variables each having the Gamma distribu-
tion:

fX(x) =
1

θξsS Γ(ξs)
xξs−1e−x/θs ,

for x ≥ 0. Different sensors are characterized by different pa-
rameters (ξs, θs).

The parameters used in the first computer experiment are
shown in Table 1, where are also shown the corresponding en-
ergy allocation vectors p∗ (computed by the aforementioned al-
gorithm) and p̄. Note that p̄ is a degenerate apportionment vec-
tor, assigning all the energy to the first sensor. This is due to
the fact that the expected value E[Xn(s)] = ξsθs of the Gamma
random variable attains its maximum only at the first sensor.

s ξs θs p∗(s) p̄(s)

1 2 1 .137 1
2 3.9 .5 .172 0
3 4 .498 .260 0
4 4 .495 .234 0
5 4 .49 .197 0
6 5 .3 0 0

Table 1. Parameters of the first computer experiment.

We find E[logR(p∗)] ≈ 0.653 and η(p∗) ≈ 0.537. Accord-
ing to the results of the theorem [part (a), η(p) < 1], we know
that the best option is the energy apportionment p∗, and that all
the realizations of the random process 1

N log JN (p∗) approach
the deterministic limit E[logR(p∗)]. The results of computer
experiments shown in Fig. 1 corroborate the theoretical results.
The figure depicts 1

N log JN (p), with p = p∗ (referred to as the
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Fig. 3. Second experiment. Probability density functions fJ∞(x)

of the limiting random variable J∞(p), for the three energy ap-
portionment policies p = p∗, p̄,u.

log-optimal apportionment vector), p = p̄ (mean-optimal), and
p = u (uniform). The shown curves are obtained by averag-
ing 5000 Monte Carlo realizations of 1

N log JN (p) for different
values of N .

The parameters of the Gamma distribution for the second ex-
periment are shown in Table 2. Now we have E[logR(p∗)] ≈
−0.385 < 0 and µmax = 0.8 < 1. According to the theorem
we know that information does not grow exponentially. Instead,
it is the quantity JN (p̄) that approaches an a.e. limit in the long
run. Then, the best energy allocation is p̄, for which the expected
value of the long-run limit is maximum. These theoretical pre-
dictions are confirmed by the computer experiments (obtained
again by 5000 Monte Carlo runs) reported in Fig. 2.

s ξs θs p∗(s) p̄(s)

1 1 .5 0 0
2 1 .6 .016 0
3 1 .7 .145 0
4 1 .75 .213 0
5 1 .8 .279 .444
6 1.25 .64 .347 .556

Table 2. Parameters of the second computer experiment.

It is worth noting that p̄ is not degenerate. Indeed, there
are two sensors (s = 5, 6) for which E[Xn(s)] = ξsθs at-
tains its maximum µmax = 0.8. In this case, all the energy
must be supplied to these two sensors, and we choose to allo-
cate the energy in a way inversely proportional to the variances
V[Xn(s)] = ξsθ

2
s , s = 5, 6, of the random variables that char-

acterize those sensors. This choice ensures that, aside from
maximizing E[J∞(p)], the apportionment vector p̄ also mini-
mizes the variance V[J∞(p)], see [16] for details.

Recall that limN→∞ JN (p) is now a finite random variable,
not a deterministic value. Accordingly, Fig. 3 shows the esti-
mated probability density functions for JN (p), N = 200, corre-
sponding to the three different choices of the energy apportion-
ment.

4. CONCLUSIONS

Designing an efficient energy management protocol for practi-
cal inferential sensor networks is a very interdisciplinary and
intricately multifaceted problem. Here we adopt an admittedly
highly-idealized model that neglects many important factors, two
of which are worth mentioning: the specific (wireless, presum-
ably) energy charging mechanism between the mobile agent and
the sensors, and the specific information gathering procedure
employed by the nodes to make inference. Nevertheless, the
consequent level of abstraction allows us to emphasize some key
signal processing aspects of the problem, which is our goal.

The adopted model is basically founded on the following
general assumptions: (i) the information gathered by the sen-
sors can be precisely measured and quantified, and is additive;
(ii) the amount of such information is somehow proportional to
the amount of charge received by the sensor; and (iii) at time
slot (n+ 1) the whole network is awarded with a total energy (to
be entirely apportioned among the sensors) proportional to the
total information gathered in the n-th time slot.

This last assumption is the “capitalist” one: it is assumed that
there are many sensor networks and that each is rewarded by its
success. And, perhaps arguably when discussed over coffee: the
game is not a “zero-sum” pie-slicing exercise. The pie can (in
proper conditions) grow exponentially.

The total information gathered by the network can be mod-
eled as a random process, known as perpetuity, whose asymptotic
analysis (long-run behavior) is conducted. In one regime the to-
tal information grows without bound at an exponential rate, and
so does the total energy required (again, we pay no attention to
impose upper bounds on these quantities, which certainly will
occur soon or later in a practical system). The growth rate is de-
terministic and the system optimization goal is obvious: make
such rate as large as possible. In another regime the perpetuity
converges to a random limit. We want to maximize this limit but
here there may be debates: what is the maximum of a random
quantity? We limit ourselves to the simplest approach of maxi-
mizing the statistical average (and in some cases minimizing the
variance).

In a sense, the latter regime leads to a kind of obvious policy:
energy should be apportioned to the sensors that work better, in
expectation. Is such an energy management policy so obvious?
The former regime reveals that this is not the case. There are
situations in which the optimal energy apportionment is more
tricky, departs significantly from the “best-in-expectation” rule,
and is much less intuitive. This is not moot: Numerical experi-
ments show that the use of the appropriate energy apportionment
is critical to ensure the best mode of operation of the network,
and the losses otherwise incurred can be remarkable.

Because of the high idealization level, we do not provide ex-
amples of specific existing systems that exactly fit our model. For
the same reason, however, the model may be adapted to rather
different scenarios. For instance, we believe that some smart grid
applications can be cast in the developed framework, provided
that the concept of information is replaced by some measure of
efficiency of the users’ energy usage.
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