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ABSTRACT
In this paper, we present a consensus-based framework for de-
centralized estimation of deterministic parameters in wireless
sensor networks (WSNs). In particular, we propose an opti-
mization algorithm to design (possibly complex) sensor gains
in order to achieve an estimate of the parameter of interest
that is as accurate as possible. The proposed design algo-
rithm employs a cyclic approach capable of handling various
sensor gain constraints. In addition, each iteration of the pro-
posed design framework is comprised of the Gram-Schmidt
process and power-method like iterations, and as a result, en-
joys a low-computational cost.

Index Terms— Alternating direction method of multi-
pliers (ADMM), consensus algorithms, decentralized estima-
tion, parameter estimation, wireless sensor networks

1. INTRODUCTION

Wireless sensor networks (WSNs) present significant poten-
tial for usage in decentralized detection and estimation due
to their many advantageous characteristics such as an inher-
ent distributed structure. While the benefits of digital trans-
mission are well-known, recent research efforts have revealed
the superiority of analog WSNs in reducing the level of dis-
tortion in distributed parameter estimation compared to their
digital counterparts [1–6]. Hence, it is no surprise that analog
WSNs have already attracted a considerable attention from
researchers—see e.g. [7–13], and the references therein.

Early works in the context of analog estimation include
the study of algorithms for data fusion in both centralized or
decentralized scenarios. For instance, the authors in [14] have
proposed an average consensus-based decentralized estima-
tion scheme for a network with both fixed and time-varying
network topology. In some recent efforts to achieve minimum
estimation error, analog amplify-and-forward and phase-
shift-and-forward transmission schemes for signal transmis-
sion from sensor to fusion center (FC) have been proposed
in [7], [8], [9], and [11], where the sensor gain optimization
is usually subject to a total power constraint. Moreover, a
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distributed parameter estimation algorithm based on alternat-
ing direction method of multipliers (ADMM [15]) has been
proposed in [16] and [17]. In this paper, we first present
an ADMM-based algorithm for estimating the parameter of
interest in a decentralized manner. We further formulate the
asymptotic variance of the estimation at each node and pro-
pose an efficient optimization framework that can deal with
complex gains of the sensors for an optimized transmission
between the nodes to effectively minimize the consensus
error variance through the network.

Graph Notation: We represent the topology of the WSN
by an undirected and connected graph G = (E ,V), consist-
ing of a finite set of vertices V = {1, . . . , n} (also called
nodes), and a set of edges E ⊆ {{i, j} : i, j ∈ V}. We
denote the edge between node i and j as {i, j}, which in-
dicates a bidirectional communication between the nodes i
and j. We further assume that the sensor connections in G
are time-invariant and the transmissions are always success-
ful. We define the set of neighbors of node i including itself
as Ni , {j ∈ V : {i, j} ∈ E}. The degree of the ith node is
given by di = |Ni|.

2. SYSTEM AND FUSION MODEL

We consider a network with N single-antenna nodes each
of which observing an unknown (but deterministic) param-
eter θ ∈ C according to the linear model zi = θ + vi for
node i, where vi is the observation noise and has the distri-
bution CN (0, σ2

v,i). We further assume that the observation
noise is independent from one node to another. Moreover, we
assume that the channel state information (CSI) of the net-
work is available at the nodes (at least for the neighbors).

The decentralized estimation scheme operates as follows.
The ith node amplifies its observation with an adjustable
complex gain ai ∈ C and transmits this amplified observa-
tion to its immediate neighbors (i.e., k ∈ Ni). The received
signal at a generic node k from its neighbor node i can
be written as yk,i = hk,iaizi + nk,i, for k ∈ Ni, where
hk,i ∈ C is the channel coefficient between node k and
i, and nk,i denotes the transmission noise. Moreover, we
assume that the transmission noise is zero-mean Gaussian
noise with variance σ2

n and is uncorrelated from one trans-
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mission to another. Let Si = {si1, . . . , si|Ni|} denote the
ordered sequence of all nodes neighboring the ith node. The
collection of all observations received at node i can be ex-
pressed as zi = 1θ + vi, where zi = [zsi1 , . . . , zsi|Ni|

]T , and

vi = [vsi1 , . . . , vsi|Ni|
]T is the noise vector with covariance

Vi = E{viv
H
i } = Diag{σ2

v,si1
, . . . , σ2

v,si|Ni|
}. Consequently,

the received signal vector, this time at the ith node, from its
neighboring nodes can be expressed as

yi = HiDizi + ni = Hiaiθ + HiDivi + ni︸ ︷︷ ︸
,wi

, (1)

where ai = [asi1 , . . . , asi|Ni|
]T contains the sensor gains to be

optimized, Di = Diag(ai), yi = [yi,si1 , . . . , yi,si|Ni|
]T , Hi =

Diag([hi,si1 , . . . , hi,si|Ni|
]T ), and ni = [ni,si1 , . . . , ni,si|Ni|

]T

is the transmission Gaussian noise vector with covariance
Rni = E{nin

H
i } = σ2

nI|Ni|. Moreover, the covariance
of the combined Gaussian noise term wi, in (1) is given by
Ci = E{wiw

H
i } = HiDiViD

H
i HH

i + Rni
.

A drawback of such an amplify-and-forward scheme
(governed by variable sensor gains) is that all nodes neighbor-
ing the ith node will receive the amplified noisy observation
yi,k, k ∈ Ni, and incorporate that single observation into their
estimation. Hence, the aggregate global data streams are no
longer uncorrelated. In order to further reduce the redundant
information in the network, we use the following data com-
pression strategy: Each node starts with initializing a local in-
formation value based on (1). Namely, the ith node calculates
Ii = aH

i HH
i C−1i Hiai and transmits Ii to its neighboring

nodes. Also, note that Ii is an information measure due to the
fact that the inverse of Ii provides the variance of the max-
imum likelihood estimation (MLE) of the parameter. Next,
each node will select one node in its neighborhood with the
highest information value and only the selected node will re-
tain the received data from that node, and all other nodes will
discard the associated received signal to that node. For in-
stance, consider that the jth node has the highest information
value among the ith node’s neighborhood. Then, all nodes
k ∈ Ni\{j} will discard yk,i but the jth one. Let {Ti}Ni=1

denote the row selection matrix associated with the ith node,
which points to rows of yi that are to be discarded. Then,
the stacked received data after compression at each node can
be described as y′i = Tiyi. And, the compressed global ob-
servation vector can be written as y = Haθ + HDv + Gn,
where a = [a1, . . . , aN ], D = Diag{a}, v = [v1, . . . , vN ]T

whose covariance matrix is V, G = blkdiag({Ti}Ni=1),
H = [T1Ω1, . . . ,TnΩN ]T where Ωk is a |Nk| × N ma-
trix whose elements are [Ωk]ij = hkj , if j ∈ Sk and
j = ski ; otherwise, [Ωk]ij = 0. Also, let the combined global
noise term be w = HDv + Gn whose covariance matrix
C = E{wwH} = HDVDHHH + Σ where Σ = σ2

nIM ,
and M = 2|E| − r in which r represents the total number of
discarded communications.

The ML estimate of θ given the linear model y = Haθ+
w can thus be expressed as

θ̂ML = (aHHHC−1Ha)−1aHHHC−1y

=

(
N∑
i=1

aH
i HH

i CiHiai

)−1 N∑
i=1

aH
i HH

i C−1i yi. (2)

where the ML estimate θ̂ML is unbiased (i.e., E{θ̂ML} = θ)
with variance,

Var(θ̂ML) =

(
N∑
i=1

aH
i HH

i C−1i Hiai

)−1
(3)

=
(
aHHHC−1Ha

)−1
. (4)

2.1. ADMM-Aided Distributed ML Estimation

The goal now is to facilitate computing (2) in a distributed
manner. In order to do so, we use an average-consensus
scheme based on the alternating direction method of multi-
pliers (ADMM). Particularly, the following ADMM update
equations were derived in [18] to achieve an average consen-
sus in the network:

yk+1
i =

1

1 + 2ρ|Ni|
(
ρ|Ni|yki + ρ

∑
j∈Ni

ykj − λki + xi
)
, (5)

λk+1
i = λki + ρ

(
|Ni|yk+1

i −
∑
j∈Ni

yk+1
j

)
, (6)

where yk+1
i is the ith node’s local copy of the global vari-

able (which will eventually converge to the average value
of the initial observations, x̄ = (1/n)

∑n
i=1 xi), xi is the

initial observation of node i, and ρ > 0 is an arbitrary con-
stant. As it can be seen from the above update equations,
the updates of each node only depend on the local infor-
mation, and the algorithm is hence fully distributed. Next,
we use this ADMM-based distributed average consensus
scheme to achieve the ML estimate of the parameter. Let
Ii(0) , aH

i HH
i C−1i Hiai be the information value at node

i, and Pi(0) , aH
i HH

i C−1i yi be the corresponding state in-
formation matrix. Therefore, each node can (asymptotically)
compute the global ML estimate of θ defined in (2) by apply-
ing the distributed average consensus steps in (5) and (6) on
the Ii(0) and Pi(0). More precisely, each node updates its
information value and the state information matrix according
to (5)-(6) (by substituting xi in (5) with Ii(0) and Pi(0)) and
will obtain a local estimate of the parameter of interest at each
iteration by computing θ̂iML(k) = I−1i (k)Pi(k). Due to the
fact that, Ic , limt→∞ Ii(t) = 1

N

∑N
i=1 aH

i HH
i C−1i Hiai,

and Pc , limt→∞ Pi(t) = 1
N

∑N
i=1 aH

i HH
i C−1i yi, each

node will (asymptotically) achieve the ML estimate of the
unknown parameter:

θ̂iML = I−1c Pc =

∑N
i=1 aH

i HH
i C−1i yi∑N

i=1 aH
i HH

i C−1i Hiai

. (7)
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In addition, it can be easily shown that the variance of the es-
timation at each node converges to that of the global ML esti-
mation variance in (3); namely that limt→∞ Var(θ̂iML(t)) =

(
∑N

i=1 aH
i HH

i C−1i Hiai)
−1. In the next section, we devise a

low-cost cyclic optimization approach to design the complex
gains at each node.

3. SENSOR GAIN OPTIMIZATION

Hereafter, we address the problem of designing the (possibly
complex) sensor gains a ∈ CN in order to minimize the vari-
ance of the consensus-based estimation given in (3). As it
was shown in the previous section, the variance of the esti-
mation at each node asymptotically converges to that of the
global ML estimate of the unkown parameter. Our goal here
is to minimize Var(θ̂ML) by considering the the sensor gain
vector a as the optimization variable. In particular, the sensor
gain optimization can be formulated as

max
a

aHHH
(
HDVDHHH + Σ

)−1
Ha (8)

s. t. a ∈ Ω, (9)

where Ω denotes the search space of the sensor vector a.
Note that as D = Diag{a}, the core matrix of the seemingly
quadratic objective in (8) is a function of sensor gains a. We
will show that, by utilizing an over-parametrization approach,
the above optimization problem can be approached via a se-
quence of quadratic optimization problems.

Let η = η0 − aHHH
(
HDVDHHH + Σ

)−1
Ha, where

η0 sufficiently large to keep η positive for all a (e.g., η0 >
N ||H||2F /λmin{Σ}). We will consider the following equiva-
lent optimization problem in lieu of (8):

min
a

η (10)

s. t. a ∈ Ω. (11)

In order to tackle (10), let g(y,a) , yHRy, where y is an
auxiliary vector variable, and

R ,

(
η0 aHHH

Ha HDVDHHH + Σ

)
. (12)

Note that eH
1 R−1e1 = η−1, where e1 = (1 0 . . . 0)T is the

first standard basis of RM+1. Now consider the optimization
problem:

min
a,y

g(y,a) (13)

s. t. yHe1 = 1, a ∈ Ω. (14)

For fixed a, the minimizer y of (13) is given by y =(
eH
1 R−1e1

)−1
R−1e1 (see Result 35 in [19, p. 354]), which

is in fact a scaled version of the first column of R−1 (to satisfy
(14)). Observe that y is a scaled version of the solution to the

Table 1 The Proposed Sensor Gain Optimization Approach
Step 0: Initialize the auxiliary vector y with a random vector in
CM+1 such that y1 = 1. Initialize a ∈ Ω.
Step 1: Employ the quadratic formulation in (16), and particularly
the power method-like iterations in (17) to update the sensor gain
vector a (until convergence).
Step 2: Update y using y =

(
eH
1 R−1e1

)−1
R−1e1, or by employ-

ing the fast approach discussed below (14).
Step 3: Repeat steps 1 and 2 until a pre-defined stop criterion is
satisfied, e.g. |f(a(k)) − f(a(k+1))| ≤ ξ for some ξ > 0, where
k denotes the outer-loop iteration number, and f(.) is defined as
f(a) = η.

linear system Ry = e1, and in particular that y is a scaled
version of the vector orthogonal to all rows but the first row
of R. A fast approach to calculate y is therefore to use the
Gram-Schmidt process (applied to the rows except the first
row of R) followed by a scaling.

A more important observation, establishing the equiva-
lence of (10) and (13), is that for the minimizer y of (13) one
can easily verify that g(y,a) = η. As a result, each step of
the cyclic optimization of (13) with respect to y and a leads
to a decrease of η (and ultimately convergence, as η is lower
bounded). In addition, the minimization of (13) with respect
to a, and for fixed y, boils down to a quadratic optimization
problem. Note that for a feasible y of (13), we can partition
y as yT ,

(
1 ỹT

)
. Therefore,

yHRy = C1+ (15)(
a

1

)H
( (

HH ỹỹHH
)
�V HH ỹ

ỹHH 0

)
︸ ︷︷ ︸

,Q

(
a

1

)

where we have used the identity ỹHHDVDHHH ỹ =
aH
((

HH ỹỹHH
)
�V

)
a. Also note that C1 = η0 + ỹHΣỹ

is invariant with respect to the sensor gain vector a. Minimiz-
ing (13) with respect to a can thus be done by considering:

max
a

(
a
1

)H

Q̃

(
a
1

)
(16)

s. t. a ∈ Ω.

where Q̃ , λIM − Q with λ > λmax(Q), and Ω is as-
sumed to impose a finite/fixed energy constraint on a (e.g.,
||a||22 = N ). Interestingly, a monotonically increasing ob-
jective of (16), and equivalently a monotonically decreasing
objective of (13), can be obtained using the following power
method-like iterations (see [20–23] for details):

min
a(t+1)

∥∥∥∥∥
(

a(t+1)

1

)H

− Q̃

(
a(t)

1

)∥∥∥∥∥
2

(17)

s. t. a(t+1) ∈ Ω,
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Fig. 1. Comparison of (a) the runtime and (b) the estimation variance of the proposed method and the SDP-based approach
of [11]. The proposed algorithm exhibits significantly lower computational cost, while achieving a similar estimation variance.
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Fig. 2. Convergence of the ADMM-based ML estimation.

where t is the iteration number, and a(0) is the current
value of a. Two useful constrained scenarios for the sen-
sor gain optimization in (17) are as follows. Let, â(t) =

(IM 0M×1) Q̃

(
a(t)

1

)
. The recursions of (17) for a fi-

nite or fixed energy scenario can be expressed as a(t+1) =(√
N ||â(t)||2

)
â(t). In addition, for the phase-shift only case

(i.e. with |ai| = 1 for i = 1, . . . , N ), the recursion takes
the form a(t+1) = exp

(
jarg

(
â(t)
))

. Note that the latter
scenario can be further studied as to a Unimodular Quadratic
Program (UQP); see [20–23]. Finally, the proposed method
is summarized in Table I.

4. NUMERICAL RESULTS

In this section, we investigate the performance of our pro-
posed sensor gain optimization algorithm. We compare our
sensor gain optimization algorithm (Table I) with the state-
of-the-art semidefinite programming (SDP) based approach

of [11]. Each measurement is averaged over 300 random
channel realizations. Fig. 1(a) shows a comparison of the
computational cost (machine runtime) between our algorithm
and the SDP-based approach in [11]. It is observed from Fig.
1(a) and Fig. 1(b) that although the two algorithms yield sim-
ilar estimation variance, our proposed optimization algorithm
has a significantly lower computational burden. For example,
with N = 50 nodes, one can observe that the runtime of our
algorithm is less than 1% of the runtime associated with the
SDP-based approach. This is particularly of importance in
WSNs since not only the processing resources of the nodes
are limited but also that the environment parameters (e.g., the
channels) might change and need re-assessments frequently.
Hence, it is important for the network to be able to adapt to the
new environment as quickly as possible with minimal cost.

Our proposed two-stage algorithm also enables the nodes
to obtain the global ML estimation of the parameter based
on their local information by applying the distributed fusion
scheme algorithm described in subsection 2.1. Fig. 2 illus-
trates the simulation results for this ADMM-based decentral-
ized estimation and the convergence of the proposed decen-
tralized MLE algorithm to that of the global MLE for a net-
work with N = 16, and θ = 10. It can be observed that the
local estimate of each node θ̂iML(k) converges to the global
MLE of the parameter computed in (2), and a consensus is
achieved very quickly.

5. CONCLUSION

A sensor gain optimization for consensus-based decentral-
ized ML estimation in WSNs was proposed. The presented
framework enable the network to quickly converge to the
global MLE. Moreover, the proposed sensor gain optimiza-
tion technique can handle various sensor gain constraints very
efficiently—an important feature for large-scale WSNs.
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Salcedo, “Massive MIMO for wireless sensing with a
coherent multiple access channel.,” IEEE Trans. Signal
Processing, vol. 63, no. 12, pp. 3005–3017, 2015.

[14] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust
distributed sensor fusion based on average consensus,”
in Proceedings of the 4th international symposium on
Information processing in sensor networks. IEEE Press,
2005, p. 9.

[15] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein,
“Distributed optimization and statistical learning via the
alternating direction method of multipliers,” Founda-
tions and Trends in Machine Learning, vol. 3, no. 1, pp.
1–122, 2011.

[16] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consen-
sus in ad hoc WSNs with noisy linkspart I: Distributed
estimation of deterministic signals,” IEEE Transactions
on Signal Processing, vol. 56, no. 1, pp. 350–364, 2008.

[17] I. D. Schizas, G. B. Giannakis, S. I. Roumeliotis, and
A. Ribeiro, “Consensus in ad hoc WSNs with noisy
linkspart II: Distributed estimation and smoothing of
random signals,” IEEE Transactions on Signal Process-
ing, vol. 56, no. 4, pp. 1650–1666, 2008.

[18] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the
linear convergence of the ADMM in Decentralized Con-
sensus Optimization.,” IEEE Trans. Signal Processing,
vol. 62, no. 7, pp. 1750–1761, 2014.

[19] P. Stoica and R. L. Moses, Spectral analysis of signals,
Pearson Prentice Hall Upper Saddle River, NJ, 2005.

[20] M. Soltanalian and P. Stoica, “Designing unimodular
codes via quadratic optimization,” IEEE Trans. Signal
Processing, vol. 62, no. 5, pp. 1221–1234, 2014.

[21] M. M. Naghsh, M. Soltanalian, P. Stoica, and
M. Modarres-Hashemi, “Radar code design for de-
tection of moving targets,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 50, no. 4, pp.
2762–2778, 2014.

[22] M. Soltanalian, B. Tang, J. Li, and P. Stoica, “Joint de-
sign of the receive filter and transmit sequence for active
sensing,” IEEE Signal Processing Letters, vol. 20, no.
5, pp. 423–426, 2013.

[23] M. Soltanalian, H. Hu, and P. Stoica, “Single-stage
transmit beamforming design for MIMO radar,” Signal
Processing, vol. 102, pp. 132–138, 2014.

3423


