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ABSTRACT

We propose a hybrid dictionary approach for distributed kernel-
based adaptive learning of a nonlinear function by a network of
nodes. The hybrid dictionary incorporates a local part to improve
learning of high frequency components in the function within the
local domain of each node and a global part to provide a consensus
estimate of the function over the whole region of interest. We ap-
ply our scheme to the reconstruction of a spatial distribution by a
network of mobile nodes. Performance evaluations show that high
frequency components are reconstructed accurately by our hybrid
dictionary approach while common schemes are not able to recover
them completely.

Index Terms— Kernel adaptive filter, hybrid dictionary, dis-
tributed adaptive learning, spatial reconstruction

1. INTRODUCTION

Distributed kernel adaptive filters and kernel least-squares ap-
proaches for sensor networks are a topic of ongoing research in
the signal processing community [1–8]. A common scenario is the
reconstruction of an unknown, nonlinear function by a network of
nodes. Applications lie e.g. in the field of environmental monitoring
of physical quantities such as gas, temperature and their spatial re-
construction by sensor networks [9, 10]. However, one of the main
challenges for distributed kernel-based estimation algorithms is the
kernel-specific dictionary. Approaches [7, 8] utilize online dictio-
nary learning schemes since the decentralization is implemented via
a sequential update of the filter weight vector from node to node.
However, these algorithms do not work in a parallel fashion, i.e.
nodes do not execute their update synchronously, and they do not
enforce a consensus estimate in the network. On the other hand,
approaches as in [1, 2, 4] enable a synchronous update of the filter
weight vector among the nodes where [1, 2] enforce consensus on
the weight vectors in the network. Nevertheless, in these approaches
the dictionary is assumed to be known a-priori and to be equal
among all nodes in the network. Furthermore, it stays fixed during
the estimation process and thus, online dictionary strategies cannot
be applied to these schemes.

To incorporate online dictionary learning while enabling parallel
processing in the network we propose a novel architecture for dis-
tributed consensus-based kernel adaptive filtering by incorporating a
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Fig. 1. The main concept of the proposed hybrid dictionary ap-
proach.

hybrid dictionary. This dictionary consists of a fixed part common
to all nodes and a dynamic part which is individual to each node.
The dynamic part is the local dictionary which is responsible for an
accurate reconstruction in the input domain relevant to the specific
node. The fixed part or global dictionary is used to deliver each
node with a rough estimate of the function over the whole region of
interest where we demand consensus on the global estimate. Fig-
ure 1 illustrates the main concept of our proposed approach: The de-
picted nonlinear function includes some high frequency components
within the input domain of node j. This node samples the nonlin-
ear function in its input domain and based on these input samples it
builds a local dictionary. With the help of the local dictionary the
node is able to reconstruct the high frequency components resulting
in the green curve while achieving a global consensus estimate via
the global dictionary. In contrast, using a global dictionary only will
result in the estimate illustrated by the black curve where the high
frequency components cannot be recovered. The motivation for this
approach is that nodes acquire a detailed view of their direct vicinity
to perform tasks relevant to their specific input domain while being
aware of the global situation.

We combine the hybrid dictionary approach with the CHYPASS
algorithm from [11] and with consensus averaging to develop a
distributed consensus-based scheme. In numerical evaluations, we
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show that employing an additional local dictionary significantly
improves the reconstruction performance in the input domain of the
nodes while providing a good estimate of the whole function.

2. SYSTEM MODEL

We consider a network of J nodes observing a common nonlinear,
continuous function ψ : X → R which can model e.g. the spatial
distribution of temperature or gas. We denote the input space by
X ⊆ RL and the output space by R. The function ψ is composed
as a superposition of a global part ψG : X → R and a local part
ψL : X → R where ψG incorporates low and ψL high frequency
components. Each node j measures ψ per time index k ∈ N by
feeding it with its input sample xj,k ∈ RL following

dj,k = ψ(xj,k) + nj,k = ψG(xj,k) + ψL(xj,k) + nj,k. (1)

Hence, each node j acquires a new observation dj,k of ψ per time k
based on its input sample xj,k. The noise nj,k is assumed to be zero-
mean white Gaussian with variance σ2

n. To describe the network we
use a graph G = {J , E} with a set of nodes J and a set of edges E .
The set E contains all connections among the nodes in the network
where we assume that each node is connected to itself. Each node
j has a neighborhood given by the set Nj containing all nodes con-
nected to it (including itself). We consider undirected and connected
graphs, i.e. edges are symmetric and each node can be reached by
any other node over multiple hops, respectively. The objective of the
network is to distributedly reconstruct the global ψG and local ψL by
an exchange of information among neighboring nodes. Additionally,
we demand that each node j refines the reconstruction of ψL in its
local domain based on its measurements acquired over time.

3. DIFFUSION-BASED KERNEL ADAPTIVE FILTER
WITH HYBRID DICTIONARY

3.1. Derivation

To derive our hybrid dictionary approach, we first introduce a com-
mon kernel adaptive filter ϕj : X → R per node j. The filter ϕj
utilizes a positive-definite kernel κ : X × X → R with a dictio-
nary set D = {κ( · , x̄n)}Nn=1 containing functions κ( · , x̄n) cen-
tered around x̄n ∈ X [12]. The output for an arbitrary input sample
x ∈ X of the kernel adaptive filter ϕj(x) as an estimate of ψ(x) is
given by

ϕj(x) :=

N∑
n=1

wj,nκ(x, x̄n) = 〈wj ,κ(x)〉 (2)

with the vectors

wj := [wj,1, . . . , wj,N ]T,

κ(x) := [κ(x, x̄1), . . . , κ(x, x̄N )]T.

We denote the standard inner product as 〈 · , · 〉 and the Euclidean
norm as || · ||. We observe that ϕj can be parameterized by the
weight vector wj and many algorithms have been developed
to compute wj in an adaptive manner, e.g. [13–16]. A com-
monly used kernel function is the Gaussian kernel κ(x1,x2) =

exp
(
− ||x1−x2||2

2ζ2

)
with kernel bandwidth ζ.

For the hybrid dictionary approach we employ two kernel func-
tions per ϕj , one global kernel κG and one local kernel κL. We

define the global dictionary as DG := {κG( · , x̄G
n )}Nn=1 of car-

dinality N with global dictionary entries x̄G
n . The global dictio-

nary DG is equal for all nodes and stays fixed, i.e. its sample set
does not change over time. For κL we employ the local dictio-
nary DL

j,k := {κL( · ,xj,n)}n∈Rj,k with the index set Rj,k :=
{nj,1, . . . , nj,Rj,k} ⊂ {0, 1, . . . , k} of cardinality Rj,k. The lo-
cal dictionary depends on the node j and is allowed to grow over
time k. The index set Rj,k selects a subset of the input samples
xj,k used over time by node j. Thus, the corresponding kernel vec-
tor κj(x) for the local dictionary depends on node j and changes
over time. To incorporate the global and local kernels with their dic-
tionaries we separate the node specific weight vector wj,k and the
corresponding kernel vector κj(x) into a global and a local part:

wj,k :=

[
wG
j,k

wL
j,k

]
, κj(x) :=

[
κG(x)

κL,j(x)

]
where wG

j,k ∈ RN×1 is the global and wL
j,k ∈ RRj,k×1 the local

weight vector and

κG(x) := [κG(x, x̄G
1 ), . . . , κG(x, x̄G

N )]T,

κL,j(x) := [κL(x,xnj,1), . . . , κL(x,xnj,Rj,k
)]T.

We assume that both the global and local dictionaries are linearly
independent such that their corresponding kernel Gram matrices K̄
and K̃j,k are positive definite:

K̄ :=

 κG(x̄G
1 , x̄

G
1 ) . . . κG(x̄G

1 , x̄
G
N )

...
. . .

...
κG(x̄G

N , x̄
G
1 ) . . . κG(x̄G

N , x̄
G
N )

 ∈ RN×N

K̃j,k :=


κL(xnj,1 ,xnj,1) . . . κL(xnj,Rj,k

,xnj,1)

...
. . .

...
κL(xnj,1 ,xnj,Rj,k

) . . . κL(xnj,Rj,k
,xnj,Rj,k

)


∈ RRj,k×Rj,k .

In contrast to the global Gram matrix K̄ the local Gram matrices
K̃j,k will be specific to each node j and might vary in their dimen-
sions depending on time k. We include both matrices into a full
kernel Gram matrixKj,k as

Kj,k :=

[
K̄ 0

0 K̃j,k

]
∈ RNRj,k×NRj,k .

Our proposed algorithm consists of two steps as in the D-CHYPASS
from [17]: 1) a local update on the weight vectorwj,k per node j and
2) a diffusion step exchanging the global weight vectorswG

j,k among
neighboring nodes to achieve consensus on the global reconstruc-
tion. For step 1) we define a hyperplane Hj,k per node j and time
k containing those weight vectorsw which set the instantaneous er-
ror between desired output dj,k and estimated output ϕj,k(xj,k) to
zero:

Hj,k :=
{
w ∈ RNRj,k |〈w,K−1

j,kκ(x)〉Kj,k = dj,k
}

(3)

with theKj,k inner product defined as 〈a, b〉Kj,k := aTKj,kb for
any vectors a, b ∈ RNRj,k . This metric showed improved conver-
gence speed and steady-state performance in previous works [18,19].
Based on the CHYPASS algorithm [11] we apply the following up-
date rule onwj,k per node j:

vj,k+1 = wj,k − µ
(
wj,k − P

Kj,k

Hj,k
(wj,k)

)
, (4)
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where P
Kj,k

Hj,k
(wj,k) is the Kj,k-orthogonal projection1 of wj,k

onto the hyperplane Hj,k and vj,k+1 = [(vG
j,k)T, (vL

j,k)T]T is an
intermediate variable at node j. The projection can be evaluated
via [20]

P
Kj,k

Hj,k
(w) = w − wTκ(xj,k)− dj,k

||K−1
j,kκ(xj,k)||2Kj,k

K−1
j,kκ(xj,k). (5)

To construct a distributed scheme and to achieve consensus on the
global reconstruction of ψ, we apply consensus averaging on the
global weight vectors. Then each node j fuses its intermediate vari-
able vG

j,k+1 with those from neighboring nodes i ∈ Nj via the ma-
trix G ∈ RJ×J . This matrix assigns weights to all edges in the
network and thus, can be used to achieve a weighted average on the
global weight vectors in the network. Each node j performs the fu-
sion step wG

j,k+1 =
∑
i∈Nj

Gjiv
G
i,k+1. Then, if matrix G fulfills

the conditions2 ||G − (1/J)1J1
T
J ||2 < 1 and G1J = 1J vec-

tors wG
j,k will converge to the average of all global weight vectors

wG
j,k as a consensus state [21]. The local weight vectors are kept at

each node as private information via wL
j,k+1 = vL

j,k+1. Thus, each
node j conserves its local expertise for its own refinement based on
the local dictionary. Then, each node j is able to reconstruct the
function ψ for arbitrary inputs x via ϕj,k(x) = 〈wj,k,κ(x)〉. We
call the proposed algorithm the Hybrid Diffusion-Based CHYPASS
(HD-CHYPASS) due to its hybrid dictionary approach and its local
CHYPASS-based kernel adaptive filter.

3.2. Local Dictionary Learning

To build the local dictionary we use the input samples xj,k of each
node j. Per time k the node j uses a new input sample xj,k which
is examined for inclusion into the local dictionary DL

j,k. To this end,
each node j uses the coherence criterion [16] and an estimation error
criterion. Both criteria have to be met by the current sample xj,k to
be included into the local dictionary. The coherence criterion evalu-
ates the similarity of the current input sample xj,k with the already
included dictionary samples in DL

j,k:

max
n∈Rj,k

|κL(xj,k,xj,n)| ≤ τ (6)

where 0 < τ ≤ 1 is the coherence threshold. If an input sample xj,k
fulfills above condition, the corresponding a priori estimation error
ej,k is investigated defined as

ej,k := dj,k − ϕj,k(xj,k) = dj,k − 〈wj,k,κ(xj,k)〉 (7)

Then the local dictionary is updated as follows assuming that the
coherence criterion has been passed successfully [22]:

DL
j,k+1 :=

{
DL
j,k ∪ {κL( · ,xj,k)} if |ej,k/dj,k| > ε

DL
j,k else

(8)

where ε ≥ 0 is the error threshold. The error criterion includes
the measurement dj,k into the dictionary learning process and thus
makes sure that input samples where the estimation by the adaptive
filter ϕj,k is of low accuracy are added for further adaptation. In

1The K-projection of a vector w onto a closed convex set C is defined
as PK

C (w) := argminy∈C ||y − w||K with the positive definite matrix
K [13]

2The vector 1J is the J × 1 vector of only ones and ||X||2 denotes the
spectral norm of a matrix X
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Fig. 2. Upper left: basic scenario with node regions and true ψ(x).
Remaining plots: node-specific reconstructions using the proposed
method.

case the dictionary DL
j,k grows by a new sample, the current local

vectorwL
j,k is expanded by a single zero entry which corresponds to

the weight for the newly added dictionary sample. Then update (4)
for the intermediate weight vector becomes

vj,k+1 =

[
wj,k

0

]
− µ

[wT
j,k, 0]κ(xj,k)− dj,k
||K−1

j,kκ(xj,k)||2Kj,k

K−1
j,kκ(xj,k)

In case the dictionary DL
j,k is not changed, the weight vector wj,k

stays the same.
Remark: Per time k an inversion ofKj,k has to be executed by each
node causing high computational complexity, see (5). However, the
global Gram matrix K̄ stays fixed over time and thus, only needs
to be inverted once before the algorithm iterates. The complexity of
the inversion of the local Gram matrix K̃j,k can be significantly re-
duced by applying the selective update [19]. This strategy allows the
update of only a few coefficients in the local vector wL

j,k per time k
with minor performance loss. By this, the size of the local Gram
matrix K̃j,k and thus the complexity can be drastically reduced.

4. NUMERICAL EVALUATION

We apply HD-CHYPASS to the spatial reconstruction of multiple
Gaussian functions over the unit-square areaX = [0, 1]2. Following
model (1) the global ψG(x) incorporates low and the local ψL(xj,k)
high frequency components. Both parts are given as

ψG(x) = exp

(
−||x− p1||2

2 · 0.32

)
+ exp

(
−||x− p2||2

2 · 0.32

)
ψL(x) = 0.8 exp

(
−||x− p3||2

2 · 0.042

)
+ 0.8 exp

(
−||x− p4||2

2 · 0.042

)
with positions p1 = [0.5, 0.2]T, p2 = [0.2, 0.8]T, p3 = [0.7, 0.7]T,
p4 = [0.15, 0.15]T. We consider a mobile sensor network of J = 16
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Fig. 3. Reconstruction by D-CHYPASS (I) with one global kernel
of bandwidth ζG,1 = 0.04.

nodes where the current position of each node serves as input sam-
ple xj,k. We separate the unit-square into 16 equal square regions
with center points {cj}Jj=1. Each node is assigned to one region
where it is placed randomly per time k following a uniform dis-
tribution. Thus, per time k the nodes change their position within
their region and take a new measurement dj,k. Nodes with a dis-
tance less than D < 0.3 to each other are considered as neighbors.
For the HD-CHYPASS we use a Gaussian kernel for both global
and local kernel with bandwidths ζG = 0.3 and ζL = 0.04, re-
spectively. The global dictionary contains the center points of all
regions, i.e. DG = {κG( · , cj)}Jj=1. For the local dictionary learn-
ing we set τ = 0.1 and ε = 0.3. For comparison, we use D-
CHYPASS [17] which employs a global dictionary only but else is
equivalent to the HD-CHYPASS. D-CHYPASS (I) uses one global
kernel with bandwidth ζG,1 = 0.3 while D-CHYPASS (II) uses
two global kernels with ζG,1 = 0.3, ζG,2 = 0.04 where each dic-
tionary contains the center points, i.e. DG,1 = {κG,1( · , cj)}Jj=1

and DG,2 = {κG,2( · , cj)}Jj=1. The step size for all algorithms is
µ = 0.1 and we use the Metropolis-Hastings weights forG [23]. We
assume a noise variance of σ2

n = 0.1 and average the performance
over 100 trials with a new randomly generated sensor placement in
each trial.

Figure 2 depicts the scenario with the true nonlinear function
ψ(x) and the reconstructions by three chosen nodes in the net-
work at steady-state. Nodes 1 and 11 are located close to high
frequency components of ψ. The contour plots show that the high
frequency components can be recovered successfully by node 1
and node 11 while the reconstruction by node 2 is not tampered
by those of the other nodes. In contrast, we observe in Figure
3 that the D-CHYPASS (I) with one kernel is not able to recon-
struct the two high frequency components but gives an estimate
of the global field only. On the other hand, Figure 4 shows that
the D-CHYPASS (II) with two global kernels is able to recover
the component at node 1, but not at node 11. Figure 5 shows
the corresponding error curves over the iteration k. We compute
the normalized mean square error (NMSE) per node j and time k
via NMSEj,k = E

{∫
A
|ψ(x)−wT

j,kκ(x)|2dx
}
/
∫
A
|ψ(x)|2dx

over the specified area A. The upper left graph illustrates the global
network performance where the NMSE is evaluated over the whole
unit-square area and averaged over all nodes. The remaining plots
show the local performance of the three nodes. Here, the NMSE is
evaluated over the node-specific region only, i.e. one square area.
We can see that with respect to the overall network performance
both the D-CHYPASS (I) and (II) outperform the HD-CHYPASS.
This is due to averaging the performance over all nodes by which
the local improvement by nodes 1 and 11 are not visible anymore.
However, regarding the local error performance we can observe for
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Fig. 4. Reconstruction by D-CHYPASS (II) with two global kernels
of bandwidths ζG,1 = 0.3, ζG,2 = 0.04.
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Fig. 5. Global performance of the network over the whole area and
local performances of node 1, 2 and 11 in their specific region. The
green and red curve use the same set of kernels, where the green
curve utilizes the hybrid approach.

node 1 and node 11 that the HD-CHYPASS clearly outperforms the
other algorithms. Especially for node 11 the local reconstruction
performance is significantly improved by the local dictionary. At
node 2 all algorithms perform similarly well since no high frequency
component is present in this area.

5. CONCLUSION

We proposed a novel scheme using a hybrid dictionary to reconstruct
a nonlinear function by a network of nodes. We extended the CHY-
PASS algorithm by consensus averaging to develop a distributed
scheme and utilized two kernel functions for global and local re-
construction. We could observe that high frequency components in
the local regions of nodes can be reconstructed accurately by our
approach outperforming common schemes. In future work, the lo-
cal dictionary stage should be extended by multiple kernels with a
selection mode choosing the kernel function with the best fit.
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[16] Cédric Richard, José Carlos M. Bermudez, and Paul Honeine,
“Online prediction of time series data with kernels,” IEEE
Transactions on Signal Processing, vol. 57, no. 3, 2009.

[17] Ban-Sok Shin, Masahiro Yukawa, Renato L.G. Cavalcante, and
Armin Dekorsy, “Distributed adaptive learning with multiple
kernels in diffusion networks,” arXiv:1801.07087 [eess.SP],
2018.

[18] Masahiro Yukawa, Konstantinos Slavakis, and Isao Yamada,
“Adaptive parallel quadratic-metric projection algorithms,”
IEEE Transactions on Audio, Speech and Language Process-
ing, vol. 15, no. 5, 2007.

[19] Masahiro Yukawa and Ryu-ichiro Ishii, “An efficient kernel
adaptive filtering algorithm using hyperplane projection along
affine subspace,” in EUSIPCO, 2012.

[20] Henry Stark and Yongyi Yang, Vector space projections: a nu-
merical approach to signal and image processing, neural nets,
and optics, Wiley, 1998.

[21] Renato L. G. Cavalcante, Isao Yamada, and Bernard Mulgrew,
“An adaptive projected subgradient approach to learning in dif-
fusion networks,” IEEE Transactions on Signal Processing,
vol. 57, no. 7, 2009.

[22] John Platt, “A resource-allocating network for function inter-
polation,” Neural Computation, vol. 3, no. 2, 1991.

[23] Lin Xiao, Stephen Boyd, and Seung-Jean Kim, “Distributed
average consensus with least-mean-square deviation,” Journal
of Parallel and Distributed Computing, vol. 67, no. 1, 2007.

3418


