
AN EVENT-TRIGGERED AVERAGE CONSENSUS ALGORITHM WITH
PERFORMANCE GUARANTEES FOR DISTRIBUTED SENSOR NETWORKS

Amir Amini †, Amir Asif †, and Arash Mohammadi ‡

† Electrical and Computer Engineering, Concordia University, Montreal, QC, Canada
‡ Concordia Institute for Information System Engineering, Concordia University, Canada

ABSTRACT

This paper proposes a distributed guaranteed-performance
event-triggered average consensus (GP-ETAC) algorithm for
multi-agent/sensor networks. The proposed GP-ETAC ap-
proach is distributed and event-triggered in the sense that
the agents selectively limit their transmissions to local neigh-
bourhoods when certain triggering conditions are satisfied.
Using the Lyapunov stability theorem, a novel cost function is
optimized to compute consensus design parameters (namely,
the overall control gain and local event-triggering thresholds).
The proposed cost function provides a structured trade-off
between the number of local transmissions and the rate of
consensus convergence. The performance of the GP-ETAC
approach is evaluated through Monte-Carlo simulations.

Index Terms–Average consensus, Distributed networks,
Event-triggered communication, Guaranteed performance.

1. INTRODUCTION

Consensus algorithms have been studied extensively in dis-
tributed signal processing applications [1,2]. A vast majority
of consensus techniques require continuous participation of
all nodes constituting the multi-agent network with constant
communications between the nodes to achieve consensus on a
set of pre-defined parameters [3]. To preserve energy and pro-
long the life of the nodes, several strategies [4–7] have lately
been developed to reduce the number of information trans-
fers between nodes. These strategies can be classified into pe-
riodic communication (time-triggered) approaches [8, 9] for
first-order integrators and event-triggered approaches [10].
The later offer additional savings in the number of consensus
transmissions and is the focus of this paper.

Existing event-triggered, average consensus approaches
[11–13] focus on the selection of trigger functions that ensure
the stability of the consensus framework and prevent the Zeno
behaviour. In practice, however, it is highly desirable to in-
clude a performance guarantee on the convergence rate of the
consensus algorithm. To this end, we propose a guaranteed-
performance event-triggered average consensus (GP-ETAC)
algorithm that confirms a minimum rate for consensus con-
vergence. This performance specification is incorporated in
the design of the consensus framework by utilizing the Lya-
punov stability theorem [14–17]. The optimal design parame-
ters satisfying the predefined performance objectives are then
obtained by solving a linear matrix inequality (LMI) opti-
mization problem [18–20].

Although, the Lyapunov-based consensus approaches
have attracted much attention lately in control, application

of such approaches to optimal event-triggered average consen-
sus is still very much in its infancy. The paper addresses this
gap with a focus on developing a Lyapunov-based GP-ETAC
algorithm for distributed signal processing applications in
multi-agent/sensor networks. We extend the event-triggered
consensus framework developed in our previous work [6]
by incorporating a communication constraint and the rate
of consensus convergence in a novel cost function used to
compute the consensus design parameters, namely the local
event-triggering thresholds and common control gain. Such an
approach provides a flexible trade-off between the consensus
convergence rate and number of local nodal communications.

The paper is organized as follows. Section 2 defines the
notation used in the paper and introduces the problem state-
ment. In Section 3, we develop the GP-ETAC algorithm used
to compute the consensus design parameters. Simulation re-
sults are included in Section 4. Section 5 concludes the paper.

2. PRELIMINARIES

Notation: We use the following notation throughout the pa-
per. Matrix I is the identity matrix of the appropriate order;
Superscript † denotes Pseudo-inverse of the matrix. For ma-
trix A= {aij} ∈ Rm×n, matrix |A| is the element-wise abso-
lute values of A; row vector a(i,•) denotes row i of matrix A,
i.e., a(i,•) = [ai1, . . . , ain]. A> 0 specifies that A is a symmet-
ric positive definite matrix; Tr(A) is the trace of A; Asterisk ∗
in the lower block triangle of symmetric matrices denotes the
transpose of the corresponding block from the upper trian-
gle. For two vectors u and v of order n, u≤v refers to n
element-wise inequalities, i.e., ui ≤ vi, for (1≤ i≤n).
Graph Theory: Matrix A= {aij}N×N is the weighted ad-
jacency matrix for graph G; L is the Laplacian matrix; and
Ni is the neighbouring set for node i. See [21] for more details.

Consider a sensor network system with N nodes that re-
quire average consensus on parameter x(t) associated with the
system. Prior to the average consensus process, each node has
a different estimate of x(t), denoted by xi(0). Similar to [2],
we utilize the first-order integrator multi-agent model given
below to reach average consensus on xi(t)

ẋi(t) = ui(t), (1 ≤ i ≤ N). (1)
The goal of average consensus is to distributively achieve the
mean value on xi(0) at all nodes [2], i.e.,

lim
t→∞

∣∣∣xi(t)− 1/N
N∑
j=1

xj(0)
∣∣∣= 0, (1≤ i≤N), (2)

where t is the consensus time index. We note that the time
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scale for the system state model is different from t. The con-
trol signal ui(t)∈R is generated from a proposed distributed
control law. The agents share their states xi(t) within their
local neighbourhoods through an undirected connected net-
work to reach average consensus. To reduce the amount of
transmissions and control updates ui(t), efficient local event-
triggering functions are of great interest. Let ti0 , ti1 , . . . denote
the time instants at which node i transmits its values un-
der fulfillment of the event-triggering condition Ti. For the
interval between two consecutive triggering instants, we de-
note the most recently transmitted state of node i by x̂i(t) ,
xi(tik), t∈ [tik, tik+1). To reach consensus, the distributed pro-
tocol depending only on last transmitted values is proposed

ui(t) = −k
∑
j∈Ni

aij( x̂i(t)− x̂j(t) ), (1 ≤ i ≤ N), (3)

where k∈R is the control gain parameter to be designed.
We note that the control law (3) is a more general proto-
col for achieving average consensus as compared to the one
frequently used in existing literature where k= 1 [19]. Since
the choice of k affects the convergence rate of the algorithm,
its design is unavoidable in situations where maintaining
a minimum rate of consensus convergence is important.
Let ei(t) = x̂i(t)−xi(t) denote the difference between the
most recently transmitted state and its instantaneous value
for agent i. For further analysis, we define global vectors
as x(t) = [ xT

1 (t), . . . , xT
N(t) ]T, x̂(t) = [ x̂T

1 (t) , . . . , x̂T
N(t) ]T ,

u(t) = [uT
1 (t) , . . . , uT

N(t) ]T , and e(t) = [eT
1 (t), . . . , eT

N(t)]T. It
holds that e(t) = x̂(t)−x(t). Combining (3) with (1) leads to
the following augmented system

ẋ(t) = −kL (x(t) + e(t)) . (4)
Motivated by the cost function

J=
∫ ∞

0
xT(t)Rx(t) + uT (t)Qu(t)dt (5)

used for parameter design in control theory [22], Definition 1
proposes a modified function to incorporate the convergence
rate and local transmission load in the consensus framework.

Definition 1. Let J =
∫∞

0 (xT(t)Rx(t)+eT(t)Qe(t) )dt,
where R and Q are given positive definite weighting ma-
trices. If there exists a positive scalar J∗ such that the value
of associated cost J with the event-triggered average consen-
sus in (4) for any initial values x(0) satisfies J ≤ J∗, then J∗
is said to be the guaranteed cost for such a process.

In cost function J , matrices R and Q, respectively, assign
desired weights to the state trajectories x(t) (to control the
convergence rate to the average value) and to the difference
vector e(t) (to control the number of transmission events). An
objective function (introduced later) is also associated with
the optimization framework to derive consensus parameters
with optimal norms. Definition 1 is exclusive to our approach.

3. THE PROPOSED GP-ETAC ALGORITHM

To benefit from the Lyapunov stability theorem that incor-
porates performance guarantees in the design procedure, we
convert the consensus problem for system (4) to the stability
problem of an equivalent system. Let L̂∈R(N−1)×N denote the
reduced Laplacian matrix obtained by removing any arbitrary

row of L. The following transformation [6] is proposed

xr(t) = L̂x(t). (6)
According to [6], the consensus problem for system (4) is
equivalent to the stability problem of the system (6). Ac-
cording to [23], average consensus is reached when xr(t) = 0.
Without loss of generality, we, therefore, remove row N from
L to derive L̂ resulting in the following transformed system

ẋr(t) = −k L (xr(t) + er(t) ) , (7)

where er(t) = L̂e(t), with L= L̂LL̂†. It also follows from (6)
that er(t) = x̂r(t)−xr(t), where x̂r(t) = L̂x̂(t).

3.1. Event-Triggering Scheme

Let Xi(t) = l(i,•)x̂(t) define the instantaneous disagreement
between the last transmitted value of node i and the last
received values from its neighbours, where l(i,•) is the i-th
row of L. Moreover, X(t) = [XT

1 (t), . . . ,XT
N(t) ]T denotes the

stacked disagreement vector. Given tik, the decision on next
transmission for agent i is made locally based on the condition

tik+1 = inf { t > tik : Ti ≥ 0}, (8)
where Ti = |ei(t)|−φi|Xi(t)|, (1≤ i≤N). The scalar φi>0 is
the local event-triggering threshold to be designed for agent i.
To incorporate the design of φi’s along with control gain k in
the cost function J , the event-triggering conditions (9) are ex-
pressed as a function of xr(t) and er(t). Derived from (8), the
following component-wise inequality is, therefore, considered

e[abs] ≤ ΦX[abs], (9)
with e[abs] = [|e1(t)|, . . . , |eN(t)|]T, X[abs] = [|X1(t)|, . . . , |XN(t)|]T,
and Φ = diag(φ1 , . . . , φN). The following lemmas are intro-
duced to express (9) as a function of xr(t) and er(t).

Lemma 1. If matrix Φ with certain values φi (1≤i≤N) sat-
isfies (9), the following entry-wise inequality is also satisfied

L̂e[abs] ≤ Φ |L̂|X[abs]. (10)

Lemma 2. Let α = [α1 , . . . , αN−1 ] = l(N,•)L̂
†, and

M =
√
λmax(L̂TL̂)

[
IN−1

−α

]
.

If matrix Φ with certain values φi (1≤i≤N) satisfies the fol-
lowing entry-wise inequality

ψe ≤ Φψx̂, (11)
it also satisfies inequality (10). The undefined vectors in (11)
are ψx̂ =

[
|m(1,•)x̂r(t)| , . . . , |m(N−1,•) x̂r(t)|

]T, where m(i,•) is
row i of matrix M , and ψe =

[
|l(1,•)e(t)| , . . . , |l(N−1,•)e(t)|

]T.

Lemmas 1 and 2 can be proved by applying the sub-
additive property to the reverse triangle inequality in Eu-
clidean space. Lemma 2, in short, suggests that a Φ satis-
fying (11) also satisfies (10). Based on Lemma 1, inequal-
ity (10) is equivalent to triggering condition (9). Further,
inequality (11) can be expressed as the quadratic con-
straint eT

r (t)er(t)≤ x̂T
r (t)MTΦ2M x̂r(t). Replacing x̂r(t) with

its equal term er(t)+xr(t) results in the expression

eTr (t)er(t) ≤ ( er(t)+xr(t) )TMTΦ2M( er(t)+xr(t) ). (12)
Given the dependence of inequality (12) on the transmission
thresholds φi’s, this inequality provides a constraint on the
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number of transmissions. Once the φi’s are obtained, the dis-
tributed event-triggering mechanism (8) determines the trig-
gering instants for each agent. According to Lemmas 1 and 2,
inequality (12) is guaranteed.

3.2. Parameter Design

The following theorem computes the optimal control gain k
and event-triggering threshold φi form the cost function J
and objective function f used in the optimization problem.

Theorem 1. Given R and Q for the cost function J , the
optimal event-triggering threshold φi’s and control gain k are
computed from

k = P
−1µ, and φi =

√
τ−1γi−1 (1≤ i≤N), (13)

which are conditioned on the existence of positive scalars P, τ ,
µ, ωτ , ωk, ωP, γi, and ωγi (1≤ i≤N), satisfying the following
minimization problem with constraints expressed in terms of
linear matrix definiteness inequalities

min
µ,τ,P,γi,ωτ ,ωµ,ωP,ωγi

f =ωτ+ωk +ωP +P+ Tr(ωΓ) (14)

such that Π ,

[
−µL−µLT+R −µL MT

∗ −τI+Q MT

∗ ∗ −Γ

]
< 0,

[
ωP 1
∗ P

]
> 0,[

−ωΓ Γ
∗ −I

]
< 0,

[
−ωτ τ
∗ −1

]
< 0, and

[
−ωµ µ
∗ −1

]
< 0,

where Γ = diag ( γ1 , . . . , γN), and ωΓ = diag (ωγ1 , . . . , ωγN ).
The associated cost J for the average consensus process using
the obtained φi’s and k from (13), collectively, guarantees
J ≤ J∗, where J∗=xr(0)TPxr(0). The consensus process is
accomplished by minimizing the objective function given
in (14) for which the following inequalities are guaranteed

k2≤ωµω2
P, φi≥ (ωτωγi)

−1
4 , (1≤ i≤N). (15)

Proof. Consider V (t) =xT
r (t)Pxr(t) as the Lyapunov candi-

date for system (7). According to the Lyapunov stability the-
orem, system (7) remains stable if V̇ (t)< 0. However, in order
to incorporate the cost function J with the stability condi-
tion, we consider the following inequality

V̇ (t) + xTr (t)Rxr(t) + eTr (t)Qer(t)< 0. (16)
If (16) is satisfied, then the time derivative of V (t) is nega-
tive, i.e., V̇ (t)< 0. Therefore, (7) is stable which implies that
limxr(t) = 0 as t→∞. On the other hand, integrating (16)
results in V (∞)−V (0) +

∫∞
0 (xT

r (t)Rxr(t) + eTr (t)Qer(t) ) dt
< 0, which is equivalent to J < [V (0) =xT

r (0)Pxr(0)]. Denot-
ing J∗=xT

r (0)Pxr(0), the cost of the event-triggered average
consensus process for a given network and certain initial val-
ues is guaranteed not to exceed J∗, i.e., J <J∗. Now accord-
ing to the reduced order system (7), we expand (16). Denoting
Ω = [xT

r (t), eT
r ]T , one obtains ΩT Π1 Ω < 0 from (16), where

Π1 is defined as follows

Π1 =
[
−kPL−kPLT+R −kPL

∗ Q

]
. (17)

The event-triggered constraint (12) is equivalent to ΩTΠ2 Ω<0,

Π2 =
[
−MTΦ2M −MTΦ2M

∗ I−MTΦ2M

]
. (18)

According to the S-procedure lemma [24], if there exists
a positive scalar τ such that Π = Π1−τΠ2 < 0, then both

Algorithm 1. The GP-ETAC Algorithm
Input: Adjacency Weighting Matrix A= {aij}, Initial con-

ditions xi(0), and Weighting Matrices {R,Q}.
Output: Event-triggered Average Consensus with Guaran-

teed Performance
Preliminaries: (P1 – P2)
P1. Remove the N th row of L to determine L̂ and L= L̂LL̂†.
P2. Given L̂, determine α and matrix M from Lemma 2.
Optimization and Parameter Design Steps: (D1–D2)
D1. Using a convex optimization solver, solve the minimiza-

tion problem (14) for given parameters {R,Q}.
D2. Using (13), compute transmission threshold φi

(1≤ i≤N) and control gain k.
Consensus Steps: (C1 – C4)
C1. Each sensor sends its initial value xi(0) to its neighbours.
C2. In each consensus iteration, the state of node i is excited

by control law (3) with k computed from D2.
C3. In each consensus iteration, the event-triggering condi-

tion (8) is locally monitored with the designed φi to de-
termine when to transmit xi(t) to the neighbours.

C4. Steps C2 and C3 continue until average consensus
(i.e., ui(t)→ 0 in (3)) is achieved among agents.

ΩT Π1 Ω< 0 and ΩT Π2 Ω< 0 are guaranteed. Therefore, we
incorporate the two inequalities by obtaining Π. Applying
Schur complement [24] for Π leads to the following inequality[

−kPL−kPLT+R −kPL τMTΦ
∗ −τI+Q τMTΦ
∗ ∗ −τI

]
< 0. (19)

We pre- and post-multiply (19) withH= diag(I, I, τ−1Φ−1).
The resulting inequality is not linear due to the product of
decision variables. To derive a linear matrix constraint, we
define alternative variables Γ = τ−1Φ−2 and µ= kP. The ob-
jective function for constraint Π would maximize the event-
triggering thresholds (to minimize the number of transmis-
sions) and minimize the control gain (to minimize the con-
trol effort). The change of variables used to derive Π preserves
the original problem but makes the objective function nonlin-
ear. Motivated by [25], an objective function which minimizes
the decision variables involved in obtaining k and φi’s is de-
veloped. In this regard, we consider inequalities P−1 < ωP,
ωP> 0, µ2 < ωµ, ωµ> 0, τ2 < ωτ , ωτ > 0, γ2

i < ωγi , ωγi > 0,
(1≤i≤N), for the minimized sum of ωP, ωγi , ωτ , and ωµ. The
Schur complement converts the above inequalities into LMIs.
To minimize the guaranteed cost J∗, scalar P is considered in
the convex objective function f . Once (14) is solved, consen-
sus parameters are computed from (13).

In an event-triggering scheme there must exist a pos-
itive lower bound for any two consecutive triggering mo-
ments. Otherwise, the triggering function exhibits Zeno
behaviour [26]. It can be proved that the inter-event inter-
val for agent i is strictly positive and lower bounded by
φik
−1, i.e., tiki+1−tiki≥φik

−1, (1≤i≤N), which rules out the
Zeno behaviour. The guaranteed performance event-triggered
average consensus (GP-ETAC) approach is outlined in Algo-
rithm 1. There may be scenarios where Algorithm 1 does not
optimize to a solution. In such cases, R and Q are modified
to have reduced norm values and Algorithm 1 is repeated.
Although Algorithm 1 assumes a globally known topology,
its extension to uncertain topologies is presented in [27].
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Fig. 1: a) Average consensus on xi(t). (b) Control input ui(t).
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Fig. 2: The effect of r and q on: (a) CI, and: (b) AT (N = 10).

4. NUMERICAL SIMULATIONS

The performance of the GP-ETAC algorithm is assessed by
running Monte-Carlo simulations on random sensor networks
with various choices of N , R, and Q. The second eigenvalue
of L in each randomly generated network follows a normal
distribution with a mean of 2 and variance of 0.2. Only con-
nected networks are selected. All non-zero adjacency weights
aij are set to 1. To show detailed results for Algorithm 1, one
randomly selected Monte-Carlo realization is chosen as an
example. The non-zero elements in the adjacency matrix A of
this network are {a14, a16, a17, a19, a1,10, a24, a26, a29, a2,10,
a37, a39, a45, a48, a5,10,a67, a68, a6,10, a78, a7,10, a9,10}. To ini-
tialize the convex optimization (14), we set R= rI and Q= qI
with r= 1 and q= 1. Using the YALMIP parser and SDPT3
solver [28], we solve (14). The resulting consensus parame-
ters are k= 3.939, φ1=0.055, φ2=0.065, φ3=0.034, φ4=0.035,
φ5=0.050, φ6=0.046, φ7=0.041, φ8=0.032, φ9=0.056, and
φ10=0.020. The computed value of the guaranteed cost J∗
is 824.76. For a sampling time Ts = 0.001 sec, the evolutions
of the states xi(t) and control inputs (3) for the ten nodes
are shown in Fig. 1. With a termination value of 0.005, i.e.,
‖xr(t)‖≤ 0.005‖xr(0)‖, it takes 462 consensus iterations (CI)
to reach average consensus in this experiment. The ten nodes,
respectively, make 29, 26, 47, 44, 33, 34, 37, 47, 27, and 71
transmissions, leading to an average transmission (AT) value
of 39.50 times per agent. The cost of consensus process
is J = 151.67, which certifies that J <J∗.
Scenario 1: investigates the effect of different choices of
{r, q} (R=rI and Q=qI) on the average consensus perfor-
mance in the aforementioned network. Based on the results
summarized in Table 1, with a fixed q, increasing r acceler-
ates the convergence rate (smaller CI) at the expense of higher
average transmission AT and increased cost J . We note that
increasing R in J implies assigning a higher penalty to the de-
viation of the states from their mean value. Therefore, the op-
timization framework attempts to accelerate the convergence
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Fig. 3: The effect of r and N on: (a) CI, and: (b) J .

Table 1: Impact of weighting matrices r and q on GP-ETAC.
r q k mean(φi) CI AT J J∗

4 1 5.0731 0.0404 333 43.90 450.15 794.71
8 1 6.0091 0.0370 282 47.50 756.35 858.43
1 20 3.8875 0.0373 434 45.70 272.53 795.11
1 0.1 3.9256 0.0441 428 38.80 144.01 849.31

rate. On the other hand, decreasing q for a fixed r leads to a
smaller AT among agents. It is consistent with the definition
of J since decreasing Q assigns a lower penalty on error er(t)
allowing for larger gaps between triggering moments.
Scenario 2: studies the performance of GP-ETAC over ran-
dom networks with N = 10 for various selections of r and q.
Let S= {0.1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 25, 30}.
For each pair (r, q)∈ S×S, we solve (14) for twenty random
connected networks of size 10. The corresponding values for
the total number of consensus iterations CI and average local
transmissions AT are shown in Fig 2. In addition to the
observations made under Scenario 1, we note that: (i) Pa-
rameter r is more relevant in controlling the convergence
rate (CI) than q, whereas parameter q is more influential
in controlling the average transmission AT; (ii) The fastest
(slowest) convergence rate is roughly equivalent to the largest
(smallest) amount of average transmission AT and happens
when both r and q are large (small), and; (iii) The effect of
a change in q on CI and AT is stronger when r is small.
Scenario 3: studies the scalability of GP-ETAC for ran-
dom networks of different size. Let N = {15, 20, 30, 40} and
W= {1, 5, 10, 15}. We fix q= 1, and select (r,N)∈W×N. For
each triplet (q, r,N) chosen from the above sets, we solve (14)
for a set of 100 randomly generated networks. From the re-
sulting values of CI and J included in Fig 3, we conclude that:
(i) Higher values of r starting from r= 1 have a greater impact
on the convergence rate in larger networks, and; (ii) The op-
eration cost J increases as N is increased. These observations
corroborates that GP-ETAC provides a structured framework
to control the consensus convergence rate and amount of data
transmissions with a guaranteed cost of operation.

5. SUMMARY AND FUTURE WORK
This paper proposes a guaranteed performance, event-
triggered average consensus (GP-ETAC) approach for dis-
tributed multi-agent networks. The event-triggered consensus
problem is converted to an equivalent stability problem. The
Lyapunov stability theorem is used to develop a novel cost
function to compute the consensus design parameters. The
optimal gains guaranteeing the minimum cost for the process
is obtained through convex optimization. Future work will
extend the results to time-varying networks.
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