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ABSTRACT
Hyperspectral image unmixing is a source separation problem aim-
ing at recovering the spectra of the pure materials of the observed
scene (called endmembers), as well as their relative proportions in
each pixel of the image (called abundances). The variability of the
materials has recently received a lot of attention in the community.
In particular, a consequent number of models and algorithms have
been proposed to estimate pixel-wise endmembers to account for
their variability. These algorithms often rely on classical endmem-
ber extraction algorithms to provide reference spectra. In difficult
scenarios with shadows and significant variability these algorithms
may fail. In this paper, we address this issue in the Extended Lin-
ear Mixing Model framework by considering that an endmember is
a direction in the feature space, rather than a single point. Under this
paradigm, we show that using k-means clustering with the cosine
similarity outperforms geometric endmember extraction algorithms.
We also design an algorithm to refine the estimation of the endmem-
ber directions, and to account for both illumination and intrinsic vari-
ability effects. We show the potential of the proposed algorithm on
a synthetic dataset using real world spectra with variability, and a
challenging real dataset of a natural scene.

Index Terms— Hyperspectral unmixing, endmember variabil-
ity, Extended Linear Mixing Model, oblique manifold, convex opti-
mization

1. INTRODUCTION
Hyperspectral remote sensing enables a fine automatic identification
of the materials present in the observed scene, thanks to the fine spec-
tral resolution of hyperspectral images [1]. Their spatial resolution
is, however, limited, and the field of view a single pixel often com-
prises several materials of interest. The observed spectrum is then a
mixture of the contributions of the different materials at this location.
Spectral unmixing is a blind source separation problem whose goal
is to retrieve the spectra of the pure materials (called endmembers),
and to estimate their relative proportions (called abundances) in each
pixel [2]. A Linear Mixing Model (LMM) [3] is usually adopted for
this problem. It assumes that a pixel with index n among the N pix-
els of the image xn ∈ RL, where L is the number of spectral bands
used, is decomposed into:

xn =

P∑
p=1

apnsp + en (1)
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where P is the number of materials considered, sp ∈ RL is the
signature of endmember p, supposed to perfectly represent the cor-
responding material, and apn is the abundance coefficient of this
material in pixel n, and en is an additive noise. The abundance
coeffcients, being proportions, are subject to the abundance nonneg-
ativity constraint (ANC) and the abundance sum-to-one constraint
(ASC), i.e. each pixel must be fully explained by positive contri-
butions of the different materials. Geometrically, the data lie in a
simplex spanned by the endmembers.

The LMM has been extensively used in the past two decades
but over the years some of its limitations became apparent, namely
nonlinearities in the mixing processes and material variability. The
former occur in complex scenarios such as tree canopies or particu-
late materials (e.g. sand), and require more complex mixture mod-
els such as bilinear mixture models [4, 5]. Endmember variability,
on the other hand, simply corresponds to the fact that each material
cannot be completely represented by a single spectrum, and is al-
ways subject to some intra-class variations [6]. These can be due to
multiple factors, the main ones being local changes in the illumina-
tion conditions (because of shadows or topography), and the intrinsic
variability of the materials, corresponding to local physico-chemical
changes in the composition of the materials. This variability can be
considered in the spatial [7] or temporal [8] domains when dealing
with sequences of images. Here we focus on variability within a sin-
gle image. Two classes of methods to tackle it have been identified
in [9]: bundle-based methods, where endmembers are represented
by a collection of signatures, possibly extracted from the data [10],
and statistical methods, where statistical distributions are assigned
to the endmembers to allow them to be estimated in each pixel [11].
Recently, explicit variability models appeared to directly explain the
possible variations of the endmembers [12, 13]. Typically, these are
in the form of (1), except that the endmembers are now indexed by
the pixels as well. One of such models is the Extended Linear Mix-
ing Model (ELMM), proposed in [14]. It approximates the physi-
cal radiative transfer model of Hapke [15] into a tractable version.
In [16], the variability of the materials due to illumination is indeed
shown to be reasonably explained by pixel dependent positive scal-
ing factors. In its simplest version, the model writes:

xn = ψn

P∑
p=1

apnsp + en (2)

where ψn is a scaling factor accounting for brightness changes in
the spectral signatures of the pixels. In this model, sp is no longer
the one signature of material p, but rather a reference endmember
providing the direction of a straight line joining the origin and that
point, on which each local endmember lies. This led to a fast algo-
rithm to estimate the parameters of this model using nonnegative
least squares, called Scaled (partially) Constrained Least Squares
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Fig. 1. Geometric interpretation of the ELMM, as presented in [14].
Endmembers are further allowed to drift way from scaled versions
of the references through a Gaussian prior.

Unmixing (SCLSU), see [13] for details. However, this algorithm
cannot handle other types of variability than scaling factors. All
intrinsic variability phenomena, which are much harder to model
physically because of the diversity of their causes, are not taken into
account.

A more complex version of the ELMM algorithm [17, 14] was
proposed later. This version considers different scaling factors for
each material, but also allows each local endmember to drift away
from a scaled version of the reference, in terms of the Euclidean
distance. From a Bayesian point of view, this amounts to putting
a Gaussian prior on each local endmember, centered on the scaled
version of the reference. This way, the recovered variability is more
complex than just a scaling factor variation, and can explain intrin-
sic variability effects to some extent. This is done by solving the
following optimization problem:

arg min
A∈∆P ,S,Ψ

1

2

N∑
n=1

(
‖xn − Snan‖22 + λS‖Sn − S0ψn‖

2
F

)
(3)

where S = {Sn}, n = 1, ..., N , and A ∈ ∆P means that each
abundance vector an ∈ RP in each pixel belongs to the unit simplex
with P vertices, i.e. complies with the ASC and ANC.ψn ∈ RP×P

is a diagonal matrix comprising material dependent scaling factors
on its diagonal. S0 is a matrix containing reference endmembers.
||.||F denotes the Frobenius norm.

The geometric interpretation of the ELMM is presented in Fig. 1.
The data lies in a convex cone, whose edges are the endmembers,
and local instances of those (not represented here) are points close
to specific locations on these lines (the scaled reference endmem-
bers). Each pixel still belongs to a simplex. This formulation has
proved useful, but relies critically on the reference endmembers S0.
They have to be carefully chosen because they provide the edges of
the convex cone, which condition the whole unmixing process. The
Vertex Component Analysis (VCA) algorithm [18] is one of the best
known endmember extraction algorithms, which rely on the convex
geometry of the purely linear unmixing problem. However, in situ-
ations where shadows or other strong variability effects are present,
these algorithms, which look for extreme points of the dataset, often
recover signatures with very small magnitude. This can be explained
in the framework of the conic model that is the ELMM. Small mag-
nitude spectra are close to the origin and are due to shadows; if a
simplex based model is assumed, then these points are indeed ex-
treme in the dataset. They are poor representatives of the spectra
of the materials and cause errors in the estimation of the unmixing
parameters.

In this paper, we propose a new formulation of the ELMM and
a new unmixing algorithm which tackles this issue. We show that
using a simple k-means clustering algorithm with the cosine sim-

ilarity measure is able to provide reliable enough initial reference
signatures, which we are able to refine in the unmixing algorithm,
by modeling reference endmembers as directional data, i.e. data ly-
ing on the unit hypersphere [19]. A point on the sphere uniquely
defines a direction in the feature space.

2. PROPOSED MODEL AND ALGORITHM
2.1. Presentation of the approach

According to the ELMM, a material should not be summarized by a
single point anymore, but all the points on a line joining the origin
and a reference represent the same material, with different brightness
variations. Ideally, an endmember should then be seen as a direction
(or a line passing through the origin) in the feature space. With this
in mind, it makes more sense for an endmember extraction algorithm
to look for directions rather than extreme points of the dataset. Find-
ing reference directions can be simply achieved using the k-means
algorithm as a pre-processing step, with the cosine similarity mea-

sure d(xi,xj) = 1− x>
i xj

||xi||2||xj ||2
. The rationale behind this is that

this measure is insensitive to scaling variations of the spectra. Inter-
estingly, it can be shown that k-means with the cosine similarity can
be related to a mixture of Von Mises-Fisher distributions (an analog
of the Gaussian distribution for directional data, i.e. data lying on the
unit sphere [19]), in a similar way to the fact that the regular k-means
is related to a mixture of Gaussian distributions [20], which supports
the use of k-means and the cosine similarity in a conic model.

We can simply then use the centroids of the clusters as reference
endmembers. However, these may not be perfect and too close to
the center of the true convex cone, since the clustering makes hard
assignments for each pixel. This means that the average of the pixels
belonging to a cluster will tend to be biased toward the center of the
cone due to the influence of mixed pixels.

It is then necessary to be able to correct these endmembers on
the fly in the unmixing algorithm. A way to do this in the LMM
literature is to use the volume of the simplex as a regularizer for the
endmembers [21]. However, this regularizer is nonconvex and hard
to handle, and a simpler convex relaxation is considered in [22] using
sum of Euclidean distances between endmembers. It is not straight-
forward to adapt this to the conic model of the ELMM, because of
the fact that each endmember can be represented by any point on
the corresponding line. It makes no sense trying to compare the Eu-
clidean distance between two points on two lines if they are allowed
to have different magnitudes (as we will confirm in the experiments).
Using the spectral angle would be a possibility, but this quantity is
quite hard to handle in optimization problems.

To solve this issue, we propose to see the reference endmem-
bers as directional data, that is as directions in the feature space.
There are several ways to do this [23], the simplest being to con-
strain the reference endmembers to be normalized: ||sp||2 = 1 ∀p.
As a matter of fact, each line passing through the origin is uniquely
represented by a point on the unit hypersphere. Equivalently, the
reference endmember matrix should have unit norm columns, i.e.
S0 ∈ OB(L,P ), the so-called oblique manifold [23]. This way, the
distance between the references on the sphere directly impacts the
position of the lines: the greater (resp. smaller) the associated regu-
larization parameter, the closer (resp. further) to the line joining the
origin and the centroid of the dataset the lines will be, with a worse
(resp. better) data fitting. We will see that the position of the ref-
erence lines, (along with the looseness of the Gaussian prior on the
local endmembers) will also impact the sparsity of the abundances.

Thus, we design a refined formulation of the ELMM which al-
lows to iteratively adjust the position of the reference endmember
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lines in the feature space. To do that, we propose to minimize the
following cost function:

argmin
A,S,Ψ,S0

1

2

N∑
n=1

(
||xn − Snan||22 + λS ||(Sn − S0ψn)||2F

)
+
λS0

2
tr (S0VS>0 )

s.t. an ∈ ∆P ∀n
S0 ∈ OB(L,P ) (4)

where tr denotes the trace of a matrix, and V = P IP − 1P1
>
P

(1P , being a column vector of P ones), such that tr(S0VS>0 ) =∑P−1
i=1

∑P
j=i+1 ||s0i − s0j ||22, i.e. the sum of pairwise Euclidean

distances between reference endmembers [22]. λS and λS0 are reg-
ularization parameters. The term λS ||(Sn−S0ψn)||2F , forces each
local endmember to be close (but not equal) to scaled versions the
(unit norm) representatives of the reference directions. The scaling
factors capture illumination induced variability, while Sn can further
account for intrinsic variability effects. λS is directly related to the
variance of the Gaussian prior (the same for all endmembers out of
simplicity). The fact that the reference endmembers are normalized
also has the advantage of easily allowing to compare the magnitude
of the scaling factors (and thus the impact of illumination induced
variability) across different materials and images. Spatial regular-
izations could also be added if need be, as done in [14].

2.2. Optimization
Here, we propose an algorithm to obtain a stationary point of the cost
function (4). This objective function is challenging for several rea-
sons: it is nonconvex over all variables simulaneously, which usually
calls for block coordinate descent methods to get a local minimum.
In this case, this approach is made even more complex because the
problem is not convex w.r.t. S0 either, because of the nonconvex unit
norm constraints. However, we will see we can still obtain a local
minimum for this variable by taking advantage of the Riemannian
manifold structure of the constraint set. Before detailing the differ-
ent steps of the optimization, we will briefly describe how we ini-
tialize the algorithm. We first run the k-means clustering algorithm
(with the cosine similarity) to obtain centroids, which we normal-
ize to initialize S0. We initialize Sn by assigning the appropriate
column of this matrix to the current pixel xn, depending on its clus-
tering label. The other columns are initialized using the remaining
centroids. The abundance and scaling factor matrices are initialized
using the SCLSU algorithm with the centroids as references, which
is very fast. This way, we hope to obtain a good local minimum in
spite of the complexity of the problem.

The optimization w.r.t. A is relatively easy, the objective func-
tion being smooth, convex and the constraint set (unit simplex) easy
to project onto [24]. The global minimum of this subproblem can be
then obtained pixel-by-pixel using (for instance) a projected gradient
descent. The optimizations w.r.t to Sn and ψn are easy and enjoy
closed form solutions (see [17] for details). Optimizing over S0 is
harder because of the unit sphere constraints, depsite the smoothness
of the objective. Using the fact that the constraint set has a Rieman-
nian manifold structure for which a retraction mapping can be eas-
ily found, we perform a conjugate gradient descent on the oblique
manifold [23] (we use the Manopt toolbox for MATLAB [25]). The
convergence of each subproblem is guaranteed, but we cannot prove
the convergence of the global algorithm to a stationary point of the
objective, although in practice convergence is always observed.

We stop the algorithm whenever the relative variations between
consecutive iterates of all blocks of variables go below ε = 10−3 (in
norms). We note that the convergence is going to be slower than the

original ELMM with fixed reference endmembers, because the latter
are now iteratively updated and impact the whole geometry of the
unmixing. 3. EXPERIMENTS
In this section, we present results obtained on a synthetic dataset
whose materials incorporate realistic variability features, as well as
a quite challenging real dataset with very correlated endembers and
the presence of a significant proportion of shadowed areas.
3.1. Synthetic dataset
3.1.1. Data Generation

We generate a synthetic dataset in the following way. First, we use
the ground truth of the well known Pavia University dataset1 to pro-
vide us with labeled spectra (203 bands in the visible and near in-
frared domains) belonging to several classes of interest, incorporat-
ing their spectral variability. We consider three classes present in
that image: vegetation, concrete and metallic roofs. Theses classes
incorporate both illumination induced variability (the roofs and trees
have different orientations with respect to the sun) and more intrin-
sic variability sources (especially in concrete and vegetation). In
each pixel, we choose the local endmembers to be a random sam-
ple within each of these classes (after a normalization to make each
representative lie on the unit sphere).

Scaling factors have been simulated using a mixture of 4 Gaus-
sian distributions (fitted from the results of SCLSU on a subimage of
the Pavia dataset), which reflects the fact that in real scenarios scal-
ing factors often come from multimodal distributions (for example
roofs with two different orientations, or areas with shadows).

The abundances have been designed to be relatively sparse, us-
ing a Dirichlet distribution such that the probability density is con-
centrated around the edges and vertices of the unit simplex (while
still allowing a proportion of heavily mixed pixels).

The data was then generated using Eq. (2), adding Gaussian
white noise such that the signal to noise ratio is 30dB. The gener-
ated image then benefits from realistic statistical properties.
3.1.2. Results
First, we run the VCA+SCLSU algorithm to quickly get unmix-
ing results with variability using VCA derived endmembers. We
show below that this approach fails. Then we focus on testing
two algorithms with k-means derived references: SCLSU and the
ELMM of [17]. Also, we denote by ELMM-SSD (Sum of Squared
Distances) the ELMM augmented with the convex volume regular-
ization, but without the oblique manifold constraint. Finally, we
compare all those methods to the proposed one, denoted as RELMM
(for Robust ELMM). Note that we do not compare the results to
the classical Fully Constrained Least Squares Unmixing [26], be-
cause this algorithm assumes a simplex-based model and has been
shown to fail in many endmember variability scenarios. For each
algorithm, we empirically tune the regularization parameters to ob-
tain the best possible performance (the chosen values are reported
in Table 1). Quantitative results are presented using two metrics:
the abundance Root Mean Squared Error (aRMSE) between the
true abundances and the recovered ones: 1

N
√
P

∑N
n=1 ||ân − an||2,

and the mean (over all pixels and materials) Spectral Angle Mapper

(SAM) SAM = 1
NP

∑N
n=1

∑P
p=1 acos

(
ŝ>pnspn

||ŝpn||2||spn||2

)
between

the true endmembers in each pixel and the recovered ones. These
quantities are gathered in Table 1.

The VCA+SCLSU approach obtains very poor results both in
abundance estimation and variability retrieval, because indeed two

1http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral Remote
Sensing Scenes\sharpPavia University scene
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λS λS0 aRMSE SAM (degrees) Time (s)
VCA+SCLSU × × 0.2075 54.4 2

SCLSU × × 0.0654 6.32 2
ELMM 0.01 × 0.0642 5.62 57

ELMM+SSD 0.1 0.25 0.1718 10.41 1455
RELMM 0.1 0.5 0.0560 3.48 2257

Table 1. Quantitative results on the synthetic data. Except for
VCA+SLCSU, all algorithms use k-means to obtain the initial ref-
erence endmember matrix. Regularization parameters values are re-
ported when applicable.

Fig. 2. Scatterplots of the data (blue), the true endmembers (black)
and the extracted ones (red) for (a) SCLSU (b) ELMM (c) RELMM.

of the extracted signatures are associated with pixels with small scal-
ing factors, and have a very low magnitude. Using k-means instead,
along with SCLSU leads to better results, but far from optimal be-
cause the variability is only explained by scaling factors. the ELMM
does even better because of the additional Gaussian prior. We see
all the importance of the oblique manifold constraint on the last two
lines: ELMM+SSD fails because the regularization terms involves
the comparison of references with possibly different scales, whereas
introducing the constraint leads to the best results. We show in Fig. 2
qualitative results using scatterplots of the data (using the fisrt three
principal components) along with the recovered and true endmem-
bers for the three best algorithms (the other scatterplots show that the
lines are much too far away from the true cone to be relevant). Simi-
lar conclusions can be drawn from this figure, showing that RELMM
is able to find the best endmembers in each pixel.
3.2. Real dataset
The real dataset we use was acquired in 2009 by Japan Space Sys-
tems over the Tama Forest Science Garden in the western region of
Tokyo, with the CASI-3 sensor (72 spectral bands in the visible and
near-infrared domains) [27]. The spatial resolution is 1m. The im-
age we use is a 207× 268× 72 subset of the whole scene. An RGB
representation is shown in Fig. 3 (a). This dataset has been used for
supervised classification of tree species, using a ground truth and Li-
DAR data as an additional classification feature, since the different
tree species are spectrally very close to one another. The image also
comprises many shadowed areas because of the tree crowns, which
were an important hurdle in previous studies [27]. Furthermore,
other non vegetation endmembers are present, such as man made
roofs, roads, and soil. We show here that using k-means instead of
the VCA allows to distinguish between conifer and broadleaf trees in
a completely unsupervised way. Some labeled conifer and broadleaf
trees are shown in Fig. 3 (b). We show the scatterplot of the data and
labeled pure pixels in Fig. 3(c).

We unmix the data using P = 4 materials using the above men-
tioned algorithms. We show in Fig. 4 the scatterplots of the data
and recovered endmembers for VCA+SCLSU, SCLSU, ELMM, and
RELMM. The abundance maps are shown in Fig. 5. For the ELMM,
we set λS = 0.01, and for the RELMM, we set λS = 0.5 and
λS0 = 100. As in the synthetic data case, the endmembers recov-
ered by VCA are spurious because of shadow patches of the image,
and the corresponding abundances are meaningless. Most of the data
is projected on the closest line in the identified cone, which repre-
sents vegetation. Using k-means instead allows to distinguish be-

(a) (b)
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Fig. 3. (a) RGB representation of the data. (b) Ground truth for
conifer (green) and broadleaf (red) trees. (c) Scatterplot of the data,
as well as the ground truth (same color code).

Fig. 4. Scatterplots of the data (blue) and the extracted endmembers
(red) for (a) VCA+SCLSU (b) SCLSU (c) ELMM (d) RELMM.

tween conifer trees and broadleaf trees. Grass and shadows are also
detected by large and low values of the scaling factors, respectively
(not shown here because of space constraints). The abundances of
SCLSU and the ELMM are rather similar, slightly sparser for the
ELMM, because it is able to better capture variability effects than
SCLU (as seen in Fig. 4 (c). The RELMM, thanks to being able
to adjust the references, is able to obtain sparser abundance maps
which match closely the ground truth of Fig. 3 (b). We see that the
identified endmembers enclose the data very well and are the closest
to the ground truth pixels of Fig. 3 (c).

4. CONCLUSION
In this paper, we have proposed a new algorithm to unmix hyperspec-
tral data taking into account both illumination-induced and intrisic
variability of the endmembers. This algorithm is able to obtain better
estimates of the reference endmembers than VCA by taking advan-
tage of the fact that endmembers are essentially directional data. The
reference signatures are constrained to be on the unit sphere since
each point on it completely represents a line in the feature space. We
obtain robust estimates of the edges of the convex cone in the Ex-
tended Linear Mixing Model framework. Results on synthetic data
show the soundess of the approach while very good performance is
observed on a challenging real dataset. Future work will include a
way to automatically estimate material dependent parameters (such
as the variances of the Gaussian priors), and tests on the various ways
to represent endmembers as directional data.
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Fig. 5. Abundances maps obtained by the tested algorithms.
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