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ABSTRACT

Supervised classification and spectral unmixing are two methods to
extract information from hyperspectral images. However, despite
their complementarity, they have been scarcely considered jointly.
This paper presents a new hierarchical Bayesian model to perform
simultaneously both analysis in order to ensure that they benefit from
each other. A linear mixture model is proposed to described the pixel
measurements. Then a clustering is performed to identify groups
of statistically similar abundance vectors. A Markov random field
(MRF) is used as prior for the corresponding cluster labels. It pro-
motes a spatial regularization through a Potts-Markov potential and
also includes a local potential induced by the classification. Finally,
the classification exploits a set of possibly corrupted labeled data
provided by the end-user. Model parameters are estimated thanks to
a Markov chain Monte Carlo (MCMC) algorithm. The interest of
the proposed model is illustrated on synthetic and real data.

Index Terms— Bayesian model, Markov random Field, super-
vised learning, image interpretation.

1. INTRODUCTION
Hyperspectral images are mainly interpreted via two widely used
techniques, namely spectral unmixing (SU) and classification. SU
aims at retrieving elementary components (referred to as endmem-
bers) present in the image and the corresponding proportions within
each pixel [1]. Conversely, classification assigns a unique label to
each pixel using a predetermined nomenclature [2]. Both analysis
own distinct advantages making them complementary. In particular,
unmixing is an unsupervised subpixel analysis relying on physical
descriptions of the observations [1, 3, 4]. To the contrary, supervised
classification provides a semantic description of the hyperspectral
image relying on external labeled data. Classification methods are
extensively used to interpret remote sensing images and in particular
hyperspectral images because of the multitude of available methods
and the quality of their results [5–8]. Despite its potential interest in
hyperspectral image analysis, the joint exploitation of the high-level
(classification) and low-level (unmixing) approaches has been barely
proposed [9, 10]. This paper proposes to fill this gap.

In [11], the authors proposed a Bayesian model as well as a
corresponding algorithm to perform unmixing and spatial cluster-
ing according to the homogeneity of abundance vectors, which is
a property also exploited recently in [12]. This paper extends this
approach to handle the availability of a set of labeled data, akin to
any conventional supervised framework which allows end-user to
provide a set of labeled pixels. More precisely, the spectral-spatial
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(CNES) and Occitanie region.

clustering proposed in [11] is enriched to be also informed by the
classification step. Moreover, since the classification step is recip-
rocally informed by the clustering, this model allows errors in the
ground-truth labels to be identified and corrected. Indeed, label mis-
takes in user-provided labeled data is a well known issue when con-
ducting supervised classification since they can impair the training
process [13, 14]. By exploiting both labeled data and clustering, the
robustness to labeling errors of the obtained classifier is improved, as
illustrated in [15]. The resulting Bayesian model allows abundance
vectors, clustering label and classification labels to be estimated si-
multaneously. Consequently, the proposed algorithm produces a hi-
erarchical description of the hyperspectral image in terms of unmix-
ing, spectral-spatial segmentation and thematic classification.

The paper is organized as follows. Section 2 presents the model
and more particularly develops the strategy to handle the unmixing,
clustering and classification tasks jointly. A Markov chain Monte
Carlo (MCMC) method is derived in Section 3 to sample according
to the posterior of interest. Section 4 shows the results obtained on
synthetic and real data. Conclusion is reported in Section 5.

2. FROM UNMIXING TO CLASSIFICATION

2.1. Problem statement
This work aims at performing the unmixing and classification of
an hyperspectral image composed of P pixel spectra yp ∈ RD
(p ∈ P , {1, . . . , P}) which are measured in D spectral bands.
The R endmembers M = [m1, . . . ,mR] associated to elementary
components of the mixing are assumed to be known. Two main
quantities will be estimated: an abundance map A = [a1, . . . ,aP ]
and a classification map ω = [ω1, . . . , ωP ], where ap is the abun-
dance vector associated to the pth pixel and ωp ∈ J , {1, . . . , J}
is the classification label relating this pixel to a particular semantic
class, with J the number of classes. Each pixel is also characterized
by a cluster label zp ∈ K , {1, . . . ,K} assigning this pixel to a
group of homogeneous pixels. To reflect possible heterogeneity of
the semantic class, each class is assumed to contain one or several
clusters. Within a traditional supervised classification context, a par-
tial ground-truth map of the image is provided as a training set. For-
mally, a subset of theP pixels is assigned class labels cp ∈ J . These
labels are assumed to be potentially corrupted, e.g., due to some mis-
classification by the end-user. In the following, L ⊂ P stands for
the set of indexes of this subset of labeled pixels and, conversely,
U = P\L denotes the set of indexes of the remaining (i.e., non-
labeled) pixels. The hierarchical Bayesian model described hereafter
is derived to perform the low-level (e.g., unmixing) and high-level
(e.g., classification) tasks jointly, while simultaneously exploiting
the high-level external information cL , {cp, p ∈ L}. This model,
represented in Fig. 1, is detailed in the following paragraphs.
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Fig. 1: Directed acyclic graph of the proposed model.

2.2. Bayesian hierarchical model

Mixing model – Following the conventional linear mixing model
[1], each pixel of the observed hyperspectral image is described as a
linear combination of R endmembers corrupted by an additive noise

yp = Map + np (1)

where np is the noise associated to the pth pixel, assumed to be white
and Gaussian, i.e., np|s2 ∼ N (0D, s

2ID), with ID the D × D
identity matrix and 0D the D-dimensional zero vector. It is worth
noting that the proposed model can be easily adapted to handle non-
whiteness or even non-Gaussian noises. Following the approach pro-
posed by [11], a conjugate inverse-gamma distribution and a non-
informative Jeffreys prior are used as a prior distributions for the
noise variance s2 and the associated hyperparameter

s2|δ ∼ IG(1, δ), p(δ) ∝ 1

δ
1R+(δ) (2)

where ∝ means proportional to and 1R+(·) is the indicator function
on R+. These choices ensure a straightforward estimation of the
noise parameters. The observation model is then complemented
by clustering and classification models described in the following
sections.

Clustering model – As a bridge between the low-level task (i.e.
unmixing) and the high-level task (i.e. classification), an additional
clustering step is introduced in the model. More precisely, capital-
izing on [11], the hyperspectral pixels are assumed to belong to K
distinct clusters. To identify this belonging, each pixel is assigned
a cluster label zp ∈ K , {1, . . . ,K}. Within a given cluster, the
pixels are assumed to share common statistical behavior, i.e., abun-
dance vectors are assumed to be characterized by identical 1st and
2nd order moments, justifying the following a priori distribution

ap|zp = k,ψk,Σk ∼ N (ψk,Σk). (3)

In this work, the mean vector ψk and covariance matrice Σk are
assumed to be unknown and are also included within the Bayesian
model to be estimated. Thus, as unknown parameters, they are also
assigned prior distributions. First, Dirichlet distributions are chosen
as priors for ψk (k ∈ K)

ψk,r ∼ Dir(1). (4)

This choice allows the positivity and sum-to-one constraints clas-
sically used in SU to be imposed on the mean behavior of the
abundance vectors. The Σk covariance matrix is chosen as Σk =
diag(σ2

k,1, . . . , σ
2
k,R) and conjugate inverse-gamma a priori distri-

butions are assigned to the variance σ2
k,r , assumed to be a priori

independent
σ2
k,r ∼ IG(aσ, bσ) (5)

where aσ = 1 and bσ = 0.01 are chosen to define non-informative
priors.

One of the main contributions of the proposed model lies in the
prior model designed for the cluster labels z = [z1, . . . , zP ]. A
non-homogeneous MRF [16] is designed to promote two behaviors,
namely, spatial coherence of the clustering and consistency between
clusters and classes. This non-homogeneous MRF is composed
of two terms, each associated with one of this behavior. Firstly,
as in [11], a Potts-Markov potential [17] of granularity parameter
β1 is employed to promote spatial regularity of the cluster labels.
Secondly, a local potential is introduced to promote coherence be-
tween cluster labels z and classification labels ω. This potential
is parametrized by a K × J interaction matrix Q. Thus, the prior
conditional probability of zp is defined as follows

P[zp = k|zV(p), ωp, qk,ωp ] ∝

exp

V1(k, ωp, qk,ωp) +
∑

p′∈V(p)

V2(k, zp′)

 (6)

where V(p) stands for the set of indexes of pixels neighboring the
pth pixel (a conventional 4-neighbor structure in our case) and qk,j
is the kth component of the jth column of Q. The two terms V1(·)
and V2(·) are the potential of coherence with classification and the
Potts-Markov potential defined by, respectively,

V1(k, j, qk,j) = log(qk,j)

V2(k, zp′) = β1δ(k, zp′)

with δ(·, ·) the Kronecker function. The matrix Q gathers a set of
coefficients that encodes the relation of each pair (k, j) ∈ K×J of
cluster and classification labels. More precisely, a high value of qk,j
promotes the assignation, for a given pixel of class label ωp = j,
a cluster label zp = k. More generally, the coefficients defining a
given column of Q provide an implicit description of a given class
in terms of cluster contributions. Thus, Dirichlet distribution is as-
signed as a prior for each column qj of Q assumed to be independent

qj ∼ Dir(1). (7)
It is worth noting that, in the special case where β = 0 (i.e., no
spatial regularization is imposed on the cluster labels), the choice of
this Dirichlet distribution leads to the following posterior conditional
distribution

qj |z,ω ∼ Dir(n1,j + 1, . . . , nK,j + 1) (8)

where nk,j = #{p|zp = k, ωp = j} is the number of pixels be-
longing to cluster k and class j. In particular, the posterior mean
of qk,j can be written as E [qk,j |z,ω] =

nk,j+1∑K
i=1 ni,k+K

which is an

empirical estimator of P [zp = k|ωp = j].

Robust classification model – The prior probabilities for the classi-
fication labelsω are defined similarly to the prior probabilities of the
cluster labels z defined in the previous paragraph. Two potentials are
tailored to define an appropriate non-homogeneous MRF as a prior
model for the ω. The first potential is a spatial regularization simi-
lar to the potential V2(·). The second potential exploits the external
ground-truth information cL available for pixels whose indexes be-
long toL and reduces to a non-informative potential for pixels whose
indexes belong to U . Thus, this prior probability is defined as

P[ωp = j|ωV(p), cp, ηp] ∝

exp

W1(j, cp, ηp) +
∑

p′∈V(p)

W2(j, ωp′)


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with

W1(j, cp, ηp) =


{
log(ηp), if j = cp

log(
1−ηp
J−1

), otherwise
if p ∈ L

− log(J) otherwise
and

W2(j, ωp′) = β2δ(j, ωp′).

The potential W1(·) is parametrized by ηp ∈ (0, 1), a user-provided
hyperparameter reflecting the confidence the user owns in the classi-
fication label cp for the pth pixel. In the case of a high confidence in
this external data (ηp ≈ 1), the estimated classification label tends
to be equal to the user-provide one, i.e., ωp = cp. In the case of a
lower confidence, a pixel can be assigned an estimated classification
label ωp different from the label cp provided by the end-user. Thus,
the proposed hierarchical model allows this ground-truthed external
information to be corrected, resulting in a supervised classification
which is robust to the presence of mislabeling.

3. GIBBS SAMPLER

Bayesian estimators associated with the parameters defining the
model introduced in the previous sections are approximated thanks
to a MCMC algorithm [18]. This algorithm generates samples
asymptotically distributed according to the joint posterior distribu-
tion of the parameters using Gibbs moves. These samples are then
used to approximate the maximum a posteriori (MAP) estimators
of the cluster and classification labels, which consists in retaining
the most recurrent labels. Then, the minimum mean square error
(MMSE) estimators of the remaining parameters is approximated by
empirical averages over the samples. This Gibbs sampling strategy
consists in sampling according to the conditional posterior distri-
butions of each parameter. These distributions are derived in the
following paragraphs. More details are available in [19].

Abundances – Given the mixture model (1) and the prior (3), the
abundance vectors are a posteriori distributed according to the fol-
lowing multivariate Gaussian distributions

p(ap|yp, zp = k, s2,ψk,Σk)

∝ |Λk|−
1
2 exp

(
−1

2
(ap − µk)

tΛ−1
k (ap − µk)

)
with µk = Λk(

1
s2

Mtyp + Σ−1
k ψk) and Λk = ( 1

s2
MtM +

Σ−1
k )−1.

Cluster labels – As the cluster label zp is a discrete random variable,
its sampling can be achieved by evaluating the conditional probabil-
ities associated with all possible values of zp ∈ K

P(zp = k|ψk,Σk, ωp = j, qk,j)

∝ |Σk|−
1
2 exp

(
−1

2
(ap −ψk)

tΣ−1
k (ap −ψk)

)

× qk,j exp

β1 ∑
p′∈V(p)

δ(k, z′p)

 . (9)

Interaction matrix – The conditional distribution of each column
qj (j ∈ J ) of the interaction matrix Q can be expressed as follows

p(qj |z,Q\j ,ω) ∝
∏K
k=1 q

nk,j

k,j

C(ω,Q)
1S(qj)

where C(ω,Q) is the partition function of the MRF (introduced
as a normalization constant), Q\j denotes the matrix Q whose jth

column has been removed and 1S(·) is the indicator function of the
probability simplex which ensures the positivity and sum-to-one
constraints. In particular, when β1 = 0 (i.e., no spatial regular-
ization is imposed on the cluster labels), this conditional posterior
distribution reduces to the Dirichlet distribution (8), which is easy
to sampled from. More advanced sampling strategies should be
considered when β1 > 0 [19].

Classification map – Similarly to the cluster labels, the classifica-
tion labels are sampled by evaluating their conditional probabilities
for all possible labels j ∈ J , while distinguishing the cases when
an external data cp is available or not for the considered pth pixel.
More precisely, when p ∈ U , this probability reads

P[ωp = j|zp, zν(p),qj ,ωV(p), cp, ηp]

∝
qzp,jπj exp

(
β2
∑
p′∈ν(p) δ(j, ωp′)

)
K∑
k′=1

qk′,j exp

(
β1

∑
p′∈ν(p)

δ(k′, zp′)

) .

Conversely, when p ∈ L, this posterior probability is

P[ωp = j|zp, zν(p),qj ,ωV(p), cp, ηp]

∝
qzp,j exp

(
β2

∑
p′∈ν(p)

δ(j, ωp′)

)
K∑
k′=1

qk′,j exp

(
β1

∑
p′∈ν(p)

δ(k′, zp′)

) ×{ηp,when ωp = cp
1−ηp
C−1

, otherwise.

4. EXPERIMENTS

Synthetic images – To assess the effectiveness of the proposed
model, experiments are first conducted on synthetic data. These
synthetic images are generated from a clustering map drawn from
a Potts-MRF. The classification map is then obtained by grouping
together several clusters. Abundance vectors are generated from a
Dirichlet distribution of fixed parameters for each cluster. Finally,
pixels of the hyperspectral images are generated using the mixing
model (1) with real spectra composed of D = 413 spectral bands
and a Gaussian noise with SNR= 30dB. To illustrate, two particular
instances of the cluster and classification maps generated according
to this protocol are represented in Fig. 2. The first case corresponds
to a 100×100 image composed ofR = 3 endmembers,K = 3 clus-
ters and J = 2 classes (Image 1). The second case is a 200 × 200
image withR = 9 endmembers,K = 12 clusters and J = 5 classes
(Image 2).

For both images (Images 1 & 2), the upper quarter of the clas-
sification map has been used as external training data {cp}p∈L. To
evaluate the robustness of the proposed model face to mislabeling,
these labels have been corrupted by replacing the correct label class
by another with a probability equal to a particular corruption rate.
The confidence ηp (p ∈ L) in the provided ground truth has been
set equal to the percentage of correct labels. Classification results
have been compared to those obtained by conducting a mixture dis-
criminant analysis (MDA) [20]. MDA has been applied following
two different ways: either directly on the pixel spectra, or on the
abundance vectors estimated with the proposed model. Fig. 3 shows
the quality of the classification evaluated with Cohen’s kappa as a
function of the corruption rate. The obtained results underline the
expected robustness of the model.
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(a) (b)

(c) (d)
Fig. 2: Top, Image 1: classification (a) and clustering (b) maps. Bot-
tom, Image 2: classification (c) and clustering (d) maps.
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Fig. 3: Cohen’s kappa as a function of label corruption: MDA with
measured reflectance (green), MDA with abundance vectors (blue)
and proposed model (red). Shaded areas correspond to standard de-
viation resulting from 20 trials.

Moreover, to illustrate the richness of the proposed model in
term of possible interpretation, Fig. 4 represents the Q matrices esti-
mated for Images 1 & 2. These matrices lead to explicit descriptions
of the data structure by providing the distribution of the clusters with
respect to the different classes. For example, class ]5 in Image 2
gathers clusters ]3 and ]5.
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Fig. 4: Estimated Q matrix for Image 1 (left) and Image 2 (right).

Real images – Finally, experiments are conducted on a real 600 ×
600 hyperspectral image composed of D = 349 spectral bands (af-
ter removing the bands of low SNR) obtained within the MUESLI
mission1. First, R = 7 endmembers have been extracted by con-
ducting a vertex component analysis [21]. The classification ground-
truth provided by the experts after a field campaign is composed of
L = 6 classes (summer crops, straw cereals, wooded area, build-
ings, bare/hayed land, meadow) and the left half of the ground-truth
is used as external data cL with a confidence ηp = 95% (∀p ∈ L).

1http://fauvel.mathieu.free.fr/pages/muesli.html

The number of clustersK has been set to a high value, i.e., K = 40.
The proposed algorithm is expected to empty most of these clusters.
Results in term of classification accuracy obtained by the proposed
method are compared to those obtained with a state-of-the-art ran-
dom forest (RF) classifier, known to be particularly robust to label-
ing errors [22]. Parameters of the RF classifier are optimized using
5-folds cross-validation (50 trees, maximum depth of 20). The quan-
titative results are averaged over 10 trials.
Table 1: Classification results averaged over 10 trials (± standard
deviation).

Cohen’s kappa Time (s)

Proposed model 0.737 (± 0.030) 6651 (± 62)
Random forest 0.695 (± 0.003) 16 (± 0.2)

Experiment results reported in Table 1 show significant better
classification results for the proposed model on this particular im-
age. Nevertheless, this result is obtained at the cost of more exten-
sive computations induced by the MCMC algorithm, as underlined
in the same table. However, it is worth noting that the proposed
method also provides additional parameters of interest, in terms of
abundance and cluster maps. To illustrate, results obtained for a par-
ticular trial are displayed in Fig. 5.

(a) (b) (c)

(d) (e) (f)
Fig. 5: Real data: (a) pseudo-colored image, (b) expert ground-truth,
(c) training ground-truth, (d) RF classification, (e) obtained cluster-
ing and (f) obtained classification (with β1 = 0 and β2 = 1.0).

5. CONCLUSION

This paper introduced a new Bayesian model to perform spectral
unmixing, clustering and robust classification jointly. Through the
clustering step, the two well-admitted hyperspectral analysis meth-
ods, namely unmixing and classification, were conducted in a unified
framework, benefiting from low-level and high-level descriptions
of the data simultaneously. Interestingly, akin to any conventional
supervised classification setup, external ground-truth data could be
provided. However, the proposed model allowed corrupted ground-
truth labels to be taken into account and corrected, resulting in a
supervised classification robust to mislabeling. Results conducted
on synthetic and real hyperspectral datasets illustrated good perfor-
mance in term of classification and underlined the robustness of the
model in case of label errors in training data. Future works will
focus on the generalization of the proposed model to handle other
low-level tasks, i.e., different from spectral unmixing.
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