
TERAHERTZ IMAGING OF BINARY REFLECTANCE
WITH VARIATIONAL BAYESIAN INFERENCE

Haoyu Fu2 , Pu Wang1, Toshiaki Koike-Akino1, Philip V. Orlik1, and Yuejie Chi2

1 Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA 02139, USA
E-mails: {pwang, koike, porlik}@merl.com

2 Ohio State University, Columbus, OH 43210, USA
E-mails: {fu.436, chi.97}@osu.edu

ABSTRACT
In this paper, we propose a Bayesian inference approach to extract
the binary reflectance pattern of samples from compressed measure-
ments in the terahertz (THz) frequency band. Compared with ex-
isting compressed THz imaging methods relying on the sparsity of
the reflectance pattern, the proposed Bayesian approach exploits the
non-negative binary nature of the reflectance without any assumption
on its spatial pattern information and enables a pixel-wise iterative
inference approach for fast signal recovery. Numerical evaluation
confirms the effectiveness of the proposed approach.

Index Terms— Terahertz sensing, compressed measurements,
binary reflectance, variational Bayesian inference.

1. INTRODUCTION

Over the past two decades, there have been increased interests in
terahertz (THz) sensing using the time-domain spectroscopy (TDS)
in either a reflection or transmission mode, due to the broad ap-
plications in gas sensing, moisture analysis, non-destructive evalua-
tion, biomedical diagnosis, package inspection, and security screen-
ing [1]. By sending an ultra-short pulse (e.g., 1-2 picoseconds), the
THz-TDS system is able to inspect not only the top surface of the
sample but also its internal structure, either a defect underneath the
top layer or a multi-layer structure, due to its capability of penetrat-
ing a wide range of non-conducting materials. At the same time, the
ultra-short pulse also gives rise to ultra-wideband spectrum over a
band of several THz, providing a spectroscopic inspection of mate-
rial properties of the sample.

The THz-TDS can operate in a raster or compressed scanning
mode [2–5]. In the raster scanning mode, as shown in Fig. 1 (a), the
sample under inspection is illuminated by a THz-TDS point source
with a time-compact source pulse and a small spot size (or aperture).
The THz-TDS emitter sends a focused beam at a normal incident
angle to inspect a small area (or a pixel) of the sample, the detector
then samples corresponding reflected waveform via the electro-optic
sampling process, and a programmable mechanical raster moves the
sample in the plane perpendicular to the incidental waveform in or-
der to measure the two-dimensional surface of the sample. The THz-
TDS with the raster scanning mode has already been commercialized
with a fast scanning rate (up to 1,000 Hz) and applied to, among
other industrial applications [2], art and archaeology [3], quality con-
trol [6], thickness estimation [7–9] and multi-layer content extrac-
tion [10–12]. One of key challenges is to address the depth varia-
tions and its induced delay/phase variation from one pixel to another
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Fig. 1. THz-TDS sensing with a) a raster scanning (from [11]) and
b) a compressed scanning (from [13]).

due to either the irregular sample surface or the vibration from the
mechanical scanning process.

In the compressed scanning mode, as shown in Fig. 1 (b), the
THz pulse is first collimated to a broad beam and then spatially en-
coded with a random mask with the help of a spatial light modulator
(SLM) that operates in the terahertz regime [13, 14]. At the receiver
side, the spatially encoded beam is re-focused by a focusing lens
and received by a single-pixel photoconductive detector [13–15].
In other words, only one measurement is formed for a mask at a
time. The compressed scanning process repeats with different re-
alizations of random masks and collects multiple sequential mea-
surements. The sample image can then be recovered by, normally,
sparsity-driven minimization methods. In [13], the total-variation
minimization method was used to reconstruct the sample image of
a Chinese character, “light”, with a small number of measurements
than the number of pixels, as shown in Fig. 1 (b).

In this paper, rather than relying on the sparsity assumption of
the sample spatial pattern, we here exploit only the non-negative bi-
nary nature of reflectance coefficient of the sample and recover its
reflectance pattern with compressed measurements. This is moti-
vated by applications such as absolute positioning encoder systems
where a non-sparse binary pseudo-random pattern (e.g., quick re-
sponse (QR) code) may be used for the sample. To this end, the
proposed method imposes a hierarchical truncated Gaussian mix-
ture prior model to enforce the non-negative binary feature of the
reflectance, and uses the principles of generalized approximate mes-
sage passing (GAMP) and variational Bayesian inference to develop
a decoupled pixel-wise iterative recovery algorithm for fast signal
recovery. The key challenge here is that, to update the determinis-
tic unknown parameters, i.e., the two unknown means of reflectance
coefficients, we need to compute the expectation of the logarithm
of two normalization factors (due to the truncated Gaussian mix-
ture model) over the posterior distribution, resulting in no closed-
form expressions. To address this issue, we propose an approxi-
mate, closed-form updating rule by replacing the expectations with
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Fig. 2. (a) The truncated Gaussian mixture prior distribution
of the nth pixel coefficient xn with pixel-dependent variances
{α−1

n,1, α
−1
n,2}Nn=1 and two shared means {µ1, µ2}; (b) A graphical

representation of the proposed hierarchical prior model.

its values from the previous iteration. The performance is numer-
ically evaluated by using the Monte-Carlo simulation on a sample
with a binary QR-like reflectance pattern.

2. SIGNAL MODEL

Let x =
[
x1, x2, . . . , xN

]T denote a binary reflectance vector by
stacking the columns of the two-dimensional reflectance matrix of
the sample. As the THz source illuminates the sample from a spa-
tially encoded mask, the received measurement can be expressed as

y = Ax + v, xn ∈ {µ1, µ2}, (1)

where A =
[
a1, . . . ,aM

]T is the measurement matrix, v =[
v1, . . . , vM

]T is the Gaussian distributed noise with zero mean
and an unknown variance β−1, i.e., v ∼ N (0, β−1IM ), y =[
y1, . . . , yM

]T, M is the number of measurements, and µi for
i = 1, 2 are two unknown reflectance coefficients. Moreover, the
reflectance coefficient x is assumed to be non-negative, i.e., xn ≥ 0.
The signal model of (1) can, in fact, describe both raster and com-
pressed scanning acquisitions:

• In the case of the raster scanning, i.e., each pixel is illumi-
nated and measured individually, we have M = N and A
reduces to a diagonal matrix with diagonal elements respon-
sible for the depth variation [12, Section III.I.4].

• In the case of the compressed scanning, e.g., the single-pixel
THz camera [13], we have M < N and each row of the mea-
surement matrix A corresponds to one random mask pattern
used to form one measurement ym.

To account for the non-negative binary feature of x, we intro-
duce the following hierarchical Gaussian mixture prior distribution,

p (xn|αn,1, αn,2, cn;µ1, µ2)

= N+

(
xn;µ1, α

−1
n,1

)cn · N+

(
xn;µ2, α

−1
n,2

)1−cn
, (2)

where cn ∈ {0, 1} is a binary latent label variable for the pixel xn,
and the truncated Gaussian distribution is given as

N+

(
x;µ, α−1) =

{
η−1

√
α
2π

exp
(
−α(x−µ)

2

2

)
, x ≥ 0,

0, x < 0,
(3)

with µ as its mean, α−1 as the variance (or α as the precision param-
eter) and η = 1−Φ (−µ

√
α) as the normalization factor where Φ(·)

is the cumulative distribution function of the standard normal distri-
bution. In addition to (2), the binary label vector c = [c1, . . . , cN ]T

follows an i.i.d. Bernoulli distribution with parameter π,

p (cn;π) = (π)cn (1− π)1−cn . (4)

With both (2) and (4), we can show that the pixel-wise re-
flectance coefficient xn has independent truncated Gaussian mixture
prior distribution by integrating over the latent label variable cn

p (xn|αn,1, αn,2;µ1, µ2)

=
∑

cn∈{0,1}

p (xn|αn,1, αn,2, cn;µ1, µ2) p (cn;π) (5)

= πN+

(
xn;µ1, α

−1
n,1

)
+ (1− π)N+

(
xn;µ2, α

−1
n,2

)
.

The resulting truncated Gaussian mixture prior distribution of xn is
illustrated in Fig. 2 (a) with pixel-dependent precision parameters,
i.e., αn,1 and αn,2, and two shared mean parameters µ1 and µ2.

Furthermore, we treat the pixel-dependent precision parameters
α1 = [α1,1, . . . , αN,1]T and α2 = [α1,2, . . . , αN,2]T as i.i.d. ran-
dom variables and assume the Gamma distribution as their hyper-
prior distribution

p (α1,α2; a, b) =

2∏
i=1

N∏
n=1

Gamma (αn,i|a, b) , (6)

where Gamma (α|a, b) = Γ (a)−1 baαa−1e−bα with a = b =
10−6 for non-informative hyperpriors on α1 and α2. Overall, the
hierarchical truncated Gaussian mixture model can be described in
a graphical representation shown in Fig. 2 (b), where blue and red
circles denote observed and hidden random variables, respectively,
squares denote the unknown deterministic model parameters, and di-
amonds denote the pre-determined user parameters (π, a and b).

3. PROPOSED APPROACH

In this section, we derive a specialized variational Bayesian infer-
ence for the posterior distribution of the hidden random variables and
a cost function to update the deterministic model parameters. Partic-
ularly, a two-step approach is used: First, we factorize the original
likelihood function, coupled over x due to the measurement matrix
A, into a pixel-wise decoupled likelihood function with the princi-
ple of GAMP. Second, with the decoupled likelihood function on
x, the variational expectation-maximization (EM) algorithm is used
to derive the posterior distribution and the Q-function to update the
unknown model parameters.

3.1. Pixel-Wise Decoupled Likelihood Function

The likelihood function of y is given by

p (y|x;β) = (2πβ−1)−M/2e−
β‖y−Ax‖22

2 , (7)

where each measurement ym is coupled with all pixels {xn}Nn=1. In
order to enable a fast, pixel-wise Bayesian inference, we can approx-
imate the likelihood function of (7) onto the pixel coefficient xn:

p (y|x;β) ≈
N∏
n=1

p(xn|r̂n, τ̂n) =

N∏
n=1

1√
2πτ̂n

e
− (xn−r̂n)2

2τ̂n . (8)

In other words, the approximated marginal likelihood function is
given by xn ∼ N (r̂n, τ̂n) where the approximated mean r̂n and
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variance τ̂n can be found by the GAMP algorithm. As a result, the
likelihood function of y is factorized as a product of independent
decoupled likelihood function of xn with mean r̂n and variance τ̂n
(refer to the Appendix). It is worth noting that an analogous decou-
pling process of (8) has been used in wireless multi-antenna commu-
nications [16–19].

3.2. Variational Bayesian Inference

Given the decoupled likelihood function of (8), we use the vari-
ational Bayesian framework [20] to derive the posterior distribu-
tions of all hidden random variables z = {x,α1,α2, c} (red circles
in Fig. 2), and then update the unknown deterministic parameters
θ = {β, µ1, µ2} (squares in Fig. 2) by maximizing the expectation
of the complete likelihood function over the posterior distribution of
the hidden variables.

3.2.1. Posterior distributions of hidden variables {x,α1,α2, c}

In the conventional Bayesian framework, the posterior of the
hidden variables can be found via the E-step of the EM frame-
work. Generally, the E-step is to find a probability density func-
tion q(z) which, given the current estimate of the model param-
eters θ, maximizes the marginal likelihood of the measurement
p(y;θ). With the variational Bayesian framework, we can factorize
q(z) ≈ q(x)q(α1)q(α2)q(c) and, instead of joint optimization
over z, the E-step can find the optimal probability density function
of each class of hidden variables, leading to

ln q (x) = 〈ln p (y, z;θ)〉q(α1)q(α2)q(c)
+ const, (9)

ln q (α1) = 〈ln p (y, z;θ)〉q(x)q(α2)q(c)
+ const, (10)

ln q (α2) = 〈ln p (y, z;θ)〉q(x)q(α1)q(c)
+ const, (11)

ln q (c) = 〈ln p (y, z;θ)〉q(x)q(α1)q(α2)
+ const, (12)

where p(y, z) = p (y,x,α1,α2, c;θ) is the complete likelihood
function of the observable and hidden variables and q(·) is the pos-
terior distribution of the corresponding class of hidden variables.

We start with the first class of hidden variables: the pixel-wise
reflectance coefficient x. By keeping terms related to xn in (2) and
(8) in (9), we can show that {xn}Nn=1 have independent truncated
Gaussian posterior distributions

q (xn) =

{
φ−1
n

1√
2πσ̃n

exp
(
− (xn−µ̃n)2

2σ̃2
n

)
, xn ≥ 0,

0, xn < 0,
(13)

where the posterior mean µ̃n and posterior variance σ̃2
n are given as

σ̃2
n = (〈cn〉 〈αn,1〉+ 〈1− cn〉 〈αn,2〉+ 1/τ̂n)−1 , (14)

µ̃n = (〈cn〉 〈αn,1〉µ1 + 〈1− cn〉 〈αn,2〉µ2 + r̂n/τ̂n) σ̃2
n, (15)

with φn = 1− Φ (−µ̃n/σ̃n) as the normalization factor.
For the second class of hidden variables of α1, its posterior dis-

tribution is the Gamma distribution with the help of (2), (6) and (10)

q (αn,1) = Gamma(αn,1|ãn,1, b̃n,1), (16)

with ãn,1 = a+ 0.5〈cn〉 and b̃n,1 = b+ 0.5〈cn〉〈(xn − µ1)2〉.
Similarly, for the third class of α2, its posterior distribution is

also the Gamma distribution

q (αn,2) = Gamma(αn,2|ãn,2, b̃n,2), (17)

with ãn,2 = a+0.5〈1−cn〉 and b̃n,2 = b+0.5〈1−cn〉〈(xn−µ2)2〉.
Finally, for the latent label variable c, its posterior distribution

is the Bernoulli distribution with the help of (2), (4) and (12)

ln q (cn) = (ln,1 − ln,2)cn + const, (18)

with ln,1 = 0.5〈lnαn,1〉−0.5〈αn,1〉〈(xn−µ1)2〉−〈ln ηn,1〉+lnπ,
ln,2 = 0.5〈lnαn,2〉−0.5〈αn,2〉〈(xn−µ2)2〉−〈ln ηn,2〉+ln(1−π).

To compute the above parameters associated with the posterior
distributions, we need the following expressions:

〈xn〉 = µ̃n + σ̃n · φ (−µ̃n/σ̃n)/φn, 〈x2n〉 = σ̃2
n + µ̃n · 〈xn〉,

〈αn,i〉 = ãn,i/b̃n,i, 〈lnαn,i〉 = ψ(ãn,i)− ln b̃n,i, i = 1, 2,

〈cn〉 = (1 + eln,2−ln,1)−1,

where ψ (a) = ∂
∂a

ln Γ (a) is the digamma function [21].

3.2.2. Updating for deterministic parameters {β, µ1, µ2}

The next step is to find an updating rule for the deterministic un-
known parameters by maximizing the following Q-function [20]{

θ(k+1)
}

= max
θ

Q(θ,θ(k)) = argmin
θ
〈ln p(y, z;θ)〉q(z). (19)

First we use (19) to derive the updating rule for the noise vari-
ance β−1, which reduces to

(
β−1)(k+1)

=

∑M
m=1

〈
(ym − wm)2

〉
M

, (20)

where wm is the m-th element of w = Ax whose posterior can be
found in Appendix.

Then we obtain the updating rule for the two shared means µ1

and µ2. With the above derivations, the corresponding Q-function
reduces to the function g(µ1, µ2) defined as

g(µ1, µ2) =

N∑
n=1

[
〈cn〉(〈ln ηn,1〉 − 0.5〈αn,1〉(µ2

1 − 2〈xn〉µ1))

− 〈1− cn〉(〈ln ηn,2〉 − 0.5〈αn,2〉(µ2
2 − 2〈xn〉µ2))

]
, (21)

where the two normalization factors ηn,i = 1−Φ
(
−µi
√
αn,i

)
, i =

{1, 2} are a function of the hidden variables {µi}2i=1 and {αni}2i=1.
As a result, we need to compute the expectation of ln ηn,1 and
ln ηn,2 over the posterior distributions of these hidden variables
which results in no closed-form expressions. Instead, we replace
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Fig. 3. Recovered images of a QR-like pseudo random pattern with
binary reflectance at 0.3 and 0.8.

〈ln ηn,1〉 and 〈ln ηn,2〉 in (21) by their current estimates from the
previous iteration, i.e., ln η

(k)
n,1 and ln η

(k)
n,2. With this approximation,

the updates of µ1 and µ2 are decoupled as

µ
(k+1)
1 =

∑N
n=1 〈cn〉 〈αn,1〉 〈xn〉∑N
n=1 〈cn〉 〈αn,1〉

, (22)

µ
(k+1)
2 =

∑N
n=1 〈1− cn〉 〈αn,2〉 〈xn〉∑N
n=1 〈1− cn〉 〈αn,2〉

, (23)

which turn out to be the weighted averages of all posterior means.
Overall, the implementation of the proposed method is described

in Algorithm 1 where a stopping rule can be either the number of
iterations and/or the difference between two consecutive iterations.

4. NUMERICAL RESULTS

In this section, numerical results are provided to compare the pro-
posed THz imaging method with other existing approaches in terms
of the success recovery rate and the normalized mean squared error
(NMSE) as a function of a compression ratioM/N . Specifically, we
consider 1) the maximum a posteriori (MAP) approach [12] with an
extension of the decoupled likelihood function in Section 3.1 to the
underdetermined scenario of M/N < 1, and 2) the total variation
minimization approach of [13]. Since the MAP approach requires
a preset prior means and variances, we consider 3 implementations:
1) “MAP1” with true means and small variances; 2) “MAP2” with
wrong means and small variances; and 3) “MAP3” with true means
but large variances. As shown in Fig. 3, with M/N = 0.7, the
MAP1 provides a recovered image, almost identical to the ground
truth. On contrary, the MAP2 with wrong means produces a binary
image which is deviated to the ground truth and the MAP3 gives a
non-binary image due to the large variances used in the algorithm.
Meanwhile, the total variation minimization appears to fail in this
case as the spatial isotropic gradients are not sparse. Finally, the
proposed variational Bayesian approach (denoted as “GAMP-VB”)
gives a similar image to the ground truth as well as the MAP1.

We then evaluate NMSE performance for randomly generated
QR-like patterns in the Monte-Carlo simulation. In each Monte-
Carlo trial, the measurement matrix is generated as the random
Gaussian matrix with zero mean and unit variance. And the signal-
to-noise ratio (SNR) is defined as β‖Ax‖22/M . The NMSE metric
is defined as ‖x̂− x‖22/‖x‖22. The Monte-Carlo trial is considered

(a) (b)

Fig. 4. Performance comparison in terms of (a) the success rate and
(b) NMSE as a function of the compression ratio M/N .

to be a success if NMSE ≤ 10−3. Fig. 4 (a) shows that the success
rate as a function of the compression ratio. It is seen that the pro-
posed variational Bayesian approach outperforms the total-variation
minimization approach and the two MAP implementations (MAP2
and MAP3). The MAP1 with true means and small variances again
serves as an upper bound on these considered methods. The mea-
sured NMSE versus the compression ratio is shown in Fig. 4 (b)
from which similar observations can be made.

5. CONCLUSION

In this paper, a new THz imaging algorithm is proposed which cap-
tures the non-negative binary reflection pattern by introducing the
hierarchical prior signal model. The signal recovery algorithm has
been derived by using the GAMP framework to decouple the likeli-
hood function into the pixel level and using the variational Bayesian
framework to update the hidden random variables and unknown de-
terministic model parameters. It is shown that the proposed algo-
rithm outperforms the total variation minimization approach and the
MAP approach for a QR-like binary reflectance pattern.

6. APPENDIX

The approximate likelihood function of (8) can be obtained by
using the GAMP framework [22] with inputs from the means
x̂n = 〈xn〉q(xn), variances τxn = 〈(xn − x̂n)2〉q(xn), and the
noise variance β−1. Particularly, to compute the decoupled likeli-
hoods N (xn|r̂n, τ̂n) and the posterior likelihood of the noiseless
measurementN (wm|ŵm, τ̂wm), we follow the steps below:

• Initialize ŝm = 0 for m = 1, · · · ,M ;

• Step 1: for all m = 1, · · · ,M :

τ̂xm =
∑
n

A2
mnτ

x
n , p̂xm =

∑
n

Amnx̂n − τ̂xmŝm,

where Amn is the (m,n)th element of A.

• Step 2: for all m = 1, · · · ,M , compute the posterior mean
and variance of wm with respect to p(wm|ym, τ̂xm, p̂xm), i.e.,

ŵm = 〈wm〉p(wm|ym,τ̂xm,p̂xm),

τ̂wm = 〈(wm − ŵm)2〉p(wm|ym,τ̂xm,p̂xm),

and update ŝm = (ŵm − p̂xm)/τ̂xm and τ̂sm = (1− τ̂wm/τ̂xm)/τ̂xm.

• Step 3: for all n = 1, · · · , N , compute the mean and vari-
ance of the decoupled likelihood function

τ̂n =
(∑
m

A2
mnτ̂

s
m

)−1

, r̂n = x̂n + τ̂n
∑
m

Amnŝm.
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