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ABSTRACT

Tensor factorization with hard and/or soft constraints has
played an important role in signal processing and data anal-
ysis. However, existing algorithms for constrained tensor
factorization have two drawbacks: (i) they require matrix-
inversion; and (ii) they cannot (or at least is very difficult to)
handle structured regularizations. We propose a new tensor
factorization algorithm that circumvents these drawbacks.
The proposed method is built upon alternating optimization,
and each subproblem is solved by a primal-dual splitting al-
gorithm, yielding an efficient and flexible algorithmic frame-
work to constrained tensor factorization. The advantages of
the proposed method over a state-of-the-art constrained tensor
factorization algorithm, called AO-ADMM, are demonstrated
on regularized nonnegative tensor factorization.

Index Terms— alternating optimization, constrained ten-
sor factorization, nonconvex optimization, proximal splitting

1. INTRODUCTION

Tensor factorization techniques have been extensively studied
and applied not only to signal processing and machine learn-
ing problems, including signal analysis and blind source sep-
aration [1], dimensionality reduction and learning latent vari-
able models [2, 3], but also to scientific problems in chemo-
metrics [4] and neuroscience [5]. Recent comprehensive re-
views on tensor factorization can be found in [6, 7]

In the so-called canonical polyadic decomposition (CPD)
model, also known as the parallel factor analysis (PARAFAC)
model [8, 9], a tensor is decomposed into a sum of the lowest
possible number of rank-1 tensors, where a rank-one ten-
sor consists of an outer product of vectors. Although CPD
is essentially unique under relatively mild conditions [10],
hard and/or soft constraints on factors, such as nonnegativity,
sparsity, smoothness and so on, are very useful for restoring
identifiability, improving estimation accuracy, ensuring in-
terpretability of the results, and fixing ill-posedness [7, 11].
On the other hand, although there exist a bunch of tensor
factorization algorithms, most of them are designed for un-
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constrained cases or customized for handling a specific con-
straint, as pointed out in [12].

Very recently, a tensor factorization algorithm that can
easily and naturally incorporate various types of constraints
has been proposed [12]. This method is based on the alternat-
ing optimization, i.e., updating each variable (factor matrix)
by solving the corresponding subproblem in a cyclic fashion,
which is the standard approach adopted in many other ten-
sor factorization algorithms. What is different is how to solve
each subproblem: the method adopts the alternating direction
method of multipliers (ADMM) [13–15]. ADMM can effi-
ciently solve nonsmooth convex optimization problems with
the help of proximal splitting techniques [16]. Thereby, this
method, which the authors named AO-ADMM, deals with in-
volved subproblems that have no closed-form solutions.

However, there are two things to be improved. One is
that AO-ADMM requires matrix-inversion at each iteration
of ADMM. The authors of [12] suggest to alleviate this com-
putational difficulty by Cholesky decomposition and back-
substitution, but it is still a bottleneck. The other is that a class
of structured regularization, i.e., the composition of a simple
regularization function and a linear operator, cannot be (or at
least is very difficult to be) used as a soft constraint. Repre-
sentative examples include the overlapping group lasso [17]
and the total variation [18], which would be useful in many
applications, as the lasso and the quadratic variation having
been commonly used [19–21]. Note that these drawbacks are
common to other constrained tensor factorization algorithms.

To circumvent these drawbacks, we propose a new al-
gorithmic framework for constrained tensor factorization.
The proposed method is built upon alternating optimiza-
tion as well as AO-ADMM, but the essential difference is
that each subproblem is solved by a primal-dual splitting
algorithm [22, 23]. It can solve nonsmooth convex optimiza-
tion problems involving linear operators without inversion
and has been applied to signal and image processing prob-
lems, e.g., [24–29]. Thus, incorporating it into alternating
optimization yields a more efficient and flexible algorithm
for constrained tensor factorization than AO-ADMM. The
advantages of the proposed method are demonstrated on reg-
ularized nonnegative tensor factorization, where aside from
its efficiency, we empirically show that our method achieves
better factorization in terms of mean squared error.
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2. PRELIMINARIES

2.1. Canonical Polyadic Decomposition (CPD)

For brevity, we focus on third-order tensors in this paper
but everything naturally generalizes to higher-order ten-
sors. We denote a tensor by bold calligraphic letters like
X ∈ RN1×N2×N3 , a matrix by bold capital letters like
X ∈ RN1×N2 , and a vector by bold letters like x ∈ RN .

We denote the Khatri-Rao product (column-wise Kro-
necker product) of X and Y with the same number of
columns (i.e.. M2 = N2) by X ⊙ Y ∈ RM1N1×N2 , and
the tensor product (outer product) of x ∈ RN and y ∈ RM

by x ⊚ y ∈ RN×M . Note that the tensor product of three
vectors yields a rank-1 third-order tensor. The mode-d matri-
cization of X is a matrix of size

∏
Ni̸=d × Nd, denoted by

X(d). Each row of X(d) is a vector obtained by fixing all the
indices of X except the d-th one, and the matrix is formed by
stacking these row vectors by traversing the rest of the indices
from 3 back to 1.

CPD of X is given by

X =
∑R

r=1 ⊚3
d=1f

(r)
d , (1)

where f
(r)
d ∈ RNd (d = 1, 2, 3, r = 1, . . . , R) are the factors

of X , and R > 0 is the rank of X that is the minimum number
of rank-1 tensors required to represent X as their sum. Note
that a predetermined 0 < R̃ ≤ mind{Nd} is used in practice
instead of the true tensor rank R since computing R in CPD
is NP-hard [30]. For brevity, we denote the above relation by

X = [Fd]
3
d=1 (2)

where Fd := (f
(1)
d · · · f (R)

d ) ∈ RNd×R is the factor matrix of
the d-th mode, and [·d]Dd=1 is CPD of a Dth-order tensor rep-
resented by factor matrices ·d. With the help of this notation,
we can express CPD in a matricized form:

X(d) = (⊙i ̸=dFi)F
⊤
d . (3)

2.2. Primal-Dual Splitting Algorithm

Let Γ0(RN ) be the set of all proper lower semicontinuous
convex functions on RN . Consider convex optimization prob-
lems of the form:

min
x∈RN

f(x) + g(x) + h(Lx), (4)

where f, g ∈ Γ0(RN ) (f is β-Lipschitz differentiable with
β > 0), h ∈ Γ0(RK), and L : RN → RK is a linear operator.
Also, let us introduce the notion of the proximity operator of
index γ > 0 of f ∈ Γ0(RN ) as follows:

proxγf : RN → RN : x 7→ argmin
y

f(y)+
1

2γ
∥y−x∥2. (5)

A primal-dual splitting (PDS) algorithm [22] solves
Prob. (4) by the following iterative procedure: for any
x(0) ∈ RN , y(0) ∈ RK , and γ1, γ2 > 0 satisfying γ1(

β
2 +

γ2∥L∗L∥) < 1 (L∗ is the adjoint operator of L, and ∥ · ∥
denotes the operator norm), iterate⌊

x(n+1) := proxγ1g(x
(n) − γ1(∇f(x(n)) + L∗(y(n)))),

y(n+1) := proxγ2h∗(y(n) + γ2L(2x(n+1) − x(n))),
(6)

where h∗ is the convex conjugate function of h, and γ1 and
γ2 can be seen as the stepsizes. We note that the proximity
operator of h∗ is available via that of h as

proxγh∗(x) = x− γ proxγ−1h(γ
−1x) (7)

(see, e.g., [31, Theorem 14.3(ii)]). Under some mild condi-
tion on g, h, and L, the sequence (x(n))k∈N converges to an
optimal solution of Prob. (4).

3. PROPOSED METHOD

3.1. Problem Formulation

Consider the following data observation model:

Y =M(X + E), (8)

where Y is an observed data stored as a tensor possibly with
missing data, X is a true tensor data, M is a self-adjoint
idempotent linear operator that specifies the observed entries
in Y , i.e., zeroing out the entries whose indices correspond to
missing data, and E is an additive noise.

Then, wth the notation in (2), we formulate constrained
tensor factorization as a generic optimization problem:

min
F1,F2,F3

1

2
∥Y −M([Fd]

3
d=1)∥2F +

3∑
d=1

hd(Ld(F
⊤
d ))

s.t. F⊤
d ∈ Cd (d = 1, 2, 3), (9)

where ∥ · ∥F is the Frobenius norm of a tensor, hd ◦ Ld is
a regularization function (soft constraint) for the d-th factor
matrix consisting of a (possibly nonsmooth) convex function
hd and a linear operator Ld, and Cd is a closed convex set
representing a hard constraint on the d-th factor matrix. Here
we assume that the proximity operator of hd and the metric
projection1 onto Cd are efficiently computable.

This formulation covers various existing constrained ten-
sor factorization problems. A typical example would be non-
negative tensor factorization [32, 33], which is recovered by
setting hd := 0 and Cd := RNd×R

+ (R+ denotes the set

1The metric projection onto a closed convex set C is given by

PC : RN → RN : x 7→ argmin
y∈C

∥y − x∥2.
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of all nonnegative real numbers). Another example is ℓ1-
regularized tensor factorization [19, 20] promoting the spar-
sity of factors, which corresponds to penalizing factors by the
ℓ1 norm, i.e., hd := ∥ · ∥1. These constraints have shown to
be very useful for the reasons mentioned in Sec. 1.

3.2. Optimization

Since Prob. (9) is nonconvex due to the multi-linearity of
CPD, it is very difficult to solve the problem directly. As a
remedy, the alternating optimization is commonly used: each
factor matrix Fd is updated in a cyclic fashion. Specifically,
for each Fd, we solve the following subproblem:

min
Fd

1

2
∥Y(d) −M((⊙i ̸=dF̃i)F

⊤
d )∥2F + hd(Ld(F

⊤
d ))

s.t. F⊤
d ∈ Cd, (10)

where we use the matricized form in (3), and F̃i (i ̸= d) are
the fixed factor matrices except the mode d.

Now we can see that Prob (10) is convex but is still a tough
problem because of the nonsmoothness. Thus, we propose
to approximately solve the problem by few iterations of the
primal-dual splittihg algorithm in (6). To this end, first, we in-
troduce the indicator function of Cd, defined by ιCd

(x) := 0,
if x ∈ C; ιCd

(x) :=∞, otherwise. It should be noted that the
proximity operator of the indicator function of Cd is equiv-
alent to the metric projection onto Cd. Second, by letting
W := ⊙i ̸=dF̃i and F := F⊤

d , Prob (10) can be rewritten as

min
F

1

2
∥Y(d) −M(WF)∥2F + ιCd

(F) + hd(Ld(F)).

Let us define

f(F) :=
1

2
∥Y(d) −M(WF)∥2F ,

g(F) := ιCd
(F),

h(G) := hd(G) and L := Ld.

Since the squared loss term is β-Lipschitz differentiable with

β = ∥W⊤M∗(M(W))∥ = ∥W⊤M(W)∥
≤ ∥W⊤∥∥M∥∥W∥ = ∥W⊤W∥ (∵ ∥M∥ = 1),

and the proximity operators of ιCd
and hd are available from

the assumptions on Cd and hd, we can derive an iterative algo-
rithm for solving Prob. (10) based on the primal-dual splitting
algorithm in (6) as follows: for any F(0), G(0), and γ1, γ2 > 0
satisfying

γ1

(
∥W⊤W∥

2
+ γ2∥L∗

dLd∥
)

< 1, (11)

set A := W⊤M(W) and B := W⊤Y(d), and iterate F(n+1) := PCd
(F(n) − γ1(AF(n) −B+ L∗

d(G
(n)))),

G(n) ← G(n) + γ2Ld(2F
(n+1) − F(n)),

G(n+1) := G(n) − γ2 prox 1
γ2

hd
(G

(n)

γ2
).

(12)

Remark 1 (Comparison with AO-ADMM [12]). Clearly,
there is no matrix inversion in (12). Specifically, whereas
AO-ADMM requires the inversion of A+ I (see Algorithm 1
in [12]), our algorithm only needs to compute the multipli-
cation of A and F(n). The authors of [12] suggest to use
Cholesky decomposition and back-substitution for efficiently
computing this inversion, but we will see in the next section
that our algorithm outperforms AO-ADMM in terms of CPU
time. We also remark that at the update of G, our algorithm
just computes the proximity operator of hd, i.e., the linear
operator Ld is decoupled. This is another big difference from
AO-ADMM: it requires to compute the proximity operator of
hd◦Ld, which does not have a closed-form solution in general
even if that of hd does. Indeed, such a situation arises in the
following cases: the overlapping group lasso, i.e., hd := ∥·∥1
and Ld is an operator that replicates overlapping variables,
and the total variation, i.e., hd := ∥ · ∥1 and Ld is a discrete
difference operator.

It should be noted that AO-ADMM can be used not only
for the squared loss function (the first term in (10)) but also
other loss functions such as ℓ1 norm and Kullback-Leibler
divergence. Although we only describe the squared loss case
in this paper, our approach can also handle other cases by
letting f(F) := 0, h(G1,G2) := l(G1) + hd(G2) and L :=
(MW,Ld) in (4), where l is a loss function.

Finally, by incorporating (12) into alternating optimiza-
tion, we obtain a new algorithm for solving the generic con-
strained tensor factorization problem formulated in (9). The
whole algorithm is shown in Algorithm 1.

Algorithm 1: Proposed method for solving (9) (AO-
PDS)

input : F(0)
d , G(0)

d , Y(d) and ∥L∗
dLd∥ (d = 1, 2, 3)

1 while A stopping criterion is not satisfied do
2 for d = 1 to 3 do
3 W(k) := ⊙i ̸=dF

(k)
i ;

4 A(k) := W(k)⊤M(W(k));
5 B(k) := W(k)⊤Y(d);
6 Compute γ1 and γ2 by (13) and (14);
7 Update F

(k)
d and G

(k)
d using (12) initialized

with the previous F(k)
d and G

(k)
d ;

8 F
(k+1)
d ← F

(k)
d ;

9 G
(k+1)
d ← G

(k)
d ;

10 k ← k + 1;

output: F(k)
d (d = 1, 2, 3)

Remark 2 (Iteration number and stepsizes of (12)). As in
the case of AO-ADMM, each factor matrix Fd and dual vari-
able Gd are updated in a cyclic fashion in Alg. 1, so that we
can expect that after a number of iterations, these variables
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Fig. 1. Evolution of MSE (logarithmic scale) versus time in seconds on the regularized nonnegative tensor factorization: R = 5
(left), R = 10 (center) and R = 15 (right).

obtained in the previous iteration of (12) are good initial vari-
ables to the current iteration. This means that few iterations of
(12) would be enough for updating Fd and Gd, which keeps
our method computationally efficient. Indeed, the numerical
experiments in the next section show that a very few number
of iterations (3 to 7) are sufficient for empirical convergence
with reasonable precision.

In (12), the stepsizes γ1, γ2 > 0 are set to

γ1 := 0.99
2

trace(W⊤W)
, (13)

γ2 :=
1

γ1∥L∗
dLd∥

− trace(W⊤W)

2∥L∗
dLd∥

, (14)

respectively. This setting satisfies the inequality in (11) since
the trace of W⊤W is an upper bound of ∥W⊤W∥, and it can
efficiently be computed at each iteration of Alg. 1. Note that
∥L∗

dLd∥ can be estimated in advance, and once determined, it
can be used for every iteration because Ld does not change.

4. NUMERICAL EXPERIMENTS

We examined our method on regularized nonnegative tensor
factorization. Our method was compared with AO-ADMM
[12], where we used the MATLAB code distributed by the
authors of [12]. All experiments were performed using MAT-
LAB (R2017a), on a Windows 8.1 (64bit) laptop computer
with an Intel Core i7 2.6 GHz processor and 16 GB of RAM.

We tested these algorithms on synthetic data. Specifi-
cally, synthetic true tensor data were generated as follows:
for N1 = N2 = N3 = 100 and R = 5, 10 or 15, the true
factor matrices, denoted by Ftrue

d (d = 1, 2, 3), are obtained
by drawing their elements from an i.i.d. uniform distribution
on the interval (0, 1), and then 80% of the elements of Ftrue

1

are randomly set to 0, i.e., only Ftrue
1 is sparse. The observed

tensor data Y is then obtained by (8), where the elements of
E are drawn from an i.i.d. Gaussian distribution with stan-
dard deviation 0.1. In the experiments, we did not consider
missing data, i.e.,M equals to an identity operator.

For soft constraints (regularization), we adopted the ℓ1
norm for F1 and the squared Frobenius norm for F2 and
F3, where their hyperparameters were set to 5 and 2, re-
spectively. The nonnnegativity constraint is also imposed

on each factor matrix. Then we measured the evolution of
mean squared error (MSE) versus time in seconds on the
regularized nonnegative tensor factorization problem solved
by AO-ADMM and our algorithm, where MSE is defined by

1
R(N1+N2+N3)

∑3
d=1 ∥Ftrue

d − Fd∥2F . Note that the above
hyperparameters were hand-optimized in the MSE sense.

For the parameters of AO-ADMM, we used the settings
recommended by the authors of [12]. The stopping crite-
rion of the outer loop of each algorithm is set to |MSEk −
MSEk−1| < 1.0 × 10−5 (k is the number of iterations of the
outer loop). Note that this criterion can only be used for syn-
thetic data since it uses MSE. For practical situations, one
may use the value of the objective function in (9) as a stop-
ping criterion.

The results are shown in Figure 1, where n = 3, 5, 7 are
the number of the inner loop of each algorithm (ADMM or
primal-dual splitting). One can see that our method (AO-
PDS) is about three times faster than AO-ADMM. In addi-
tion, the best MSE values of AO-PDS are 0.142, 0.122 and
0.117; and those of AO-ADMM are 0.142, 0.133 and 0.127,
respectively for R = 5, 10, 15, i.e., our method results in more
accurate factorization in terms of MSE for R = 10, 15. As
expected, we observe that very small number of outer itera-
tions are enough for empirical convergence of AO-PDS. This
would be thanks to the warm-start nature of alternating opti-
mization, as in the case of AO-ADMM.

5. CONCLUSION

We have proposed an efficient and flexible tensor factorization
algorithm based on alternating optimization combined with
primal-dual splitting. Our algorithm has two advantages over
AO-ADMM, a state-of-the-art tensor factorization algorithm,
as follows: (i) it is free from matrix-inversion; and (ii) it can
efficiently handle structured regularizations. Our experimen-
tal results on regularized nonnegative tensor factorization not
only support our claim that the proposed method is more com-
putationally efficient than AO-ADMM but also revealed that
the proposed method achieves better factorization than AO-
ADMM in the sense of MSE. Finally, we should note that
some variants of ADMM, often called linearized ADMM,
e.g., [34], can also avoid matrix-inversion. Incorporating it
into alternating optimization is an interesting future work.
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