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ABSTRACT

This paper develops a new beamforming method using focused fre-
quency time reversal (FFTR) matrices as well as the time reversal-
based MUltiple SIgnal Classification (MUSIC) algorithm to focus
spatially on the location of possible tumor for microwaves-based
breast cancer detection. A key feature of the proposed method is that
there is no need for prior knowledge of the constitutive properties of
the breast tissue for breast clutter suppression; sliding sub-aperture
data processing is used to focus on tumor location. Results from our
electromagnetic finite difference time domain (FDTD) simulations
demonstrate the accuracy in estimating both the tumor location as
well as in suppressing the breast clutter using time reversal.

Index Terms— Time Reversal, SVD, Microwave Imaging, Tu-
mor Localization.

1. INTRODUCTION

Research on the applications of microwaves in medical diagnostics
has been ongoing for more than 20 years. Results point toward
substantial benefits in breast-cancer screening, breast-cancer treat-
ment monitoring, bone-disease treatment monitoring as well as brain
imaging [1]. Yet, to this day, microwave imaging has not entered
clinical practice. A similar scenario arises in the nondestructive test-
ing of materials and the nondestructive evaluation for structural in-
tegrity. What prevents this technology from realizing its potential?
From an engineering viewpoint, one major problem is the insuffi-
cient sensitivity of the microwave equipment, i.e., its ability to detect
very weak deviations in the signals. This is a critical factor that deter-
mines the sensitivity and the specificity of a diagnostics procedure.
From an imaging and signal processing point of view, the main chal-
lenge for accurate breast tumor localization using microwaves lies in
the lack of precise knowledge of constitutive properties of the breast
tissue, as well as of the skin layer and chest wall morphology [2].

The time reversal (TR) method utilizes the reciprocity of wave
propagation in a time-invariant medium to localize a target with high
resolution [3]. The focusing quality in the time-reversal method is
decided by the size of the effective aperture of transmitter-receiver
array. This effective aperture includes the physical size of the array
and the effect of the environment [4]. A complicated background
such as breast tissue creates a multipath effect and can significantly
increase the effective aperture size. Indeed, TR harnesses multi-
patg propagation to enhance focusing resolution beyond the classi-
cal diffraction limit known as super-resolution which is attractive for
many applications such as radar [5, 6], and breast microwave imag-
ing [7–9]. TR-based imaging methods use the eigenstructure of the
TR matrix to image the targets.

Generally, a singular value decomposition (SVD) of the TR ma-
trix is required for each frequency bin and for each space-space TR-
matrix [10, 11]. At each frequency, the singular vectors have an ar-
bitrary and frequency-dependent phase. In case of DORT [3], these

arbitrary phases make the eigenvectors in the time domain incoher-
ent and a pre-processing step is needed to apply coherent signals
in the back propagation phase [12]. In TR-MUSIC [13], only the
magnitude of the inner products are combined along the bandwidth
and these arbitrary phases cancel out, therefore, the problem of in-
coherency does not exist for non-noisy data. However, due to the
random phase structure induced by noise, the super-resolution prop-
erty of TR-MUSIC disappears. A modified version of TR-MUSIC,
Phase Coherent MUSIC (PC-MUSIC) [14] uses a re-formulation of
TR-MUSIC which retains the phase information but also applies av-
eraging of the pseudospectrums in frequency to cancel out the ran-
dom phase degradation of the TR-MUSIC.

In order to reduce the computational complexity of incoherent
TR-MUSIC as well as solving the phase ambiguity of the PC-
MUSIC in a noisy microwave breast environment, in this paper, we
use focused frequency TR-MUSIC (FFTR-MUSIC) [4], where we
use TR-MUSIC in conjunction with TR-based frequency focusing
matrices. In FFTR-MUSIC, the SVD is applied into a focused fre-
quency TR matrix by finding unitary focusing matrices [15–17].
A second contribution of this paper is TR clutter suppression be-
fore using the coherent FFTR-MUSIC imaging method. The TR
MUSIC-based methods require the number of elements in the an-
tenna array to be greater than the total number of scattering elements
(tumor and clutter) in the breast tissue which is not obviously pos-
sible. In contrast to the other TR-based imaging methods [18], our
TR clutter suppression algorithm does not depend on background
suppression of the clutter; rather, it suppresses the clutter using a
sliding window of sub-aperture matrices to extract localized scat-
tering information of a given breast scenario. This approach was
originally proposed for ground-penetrating radar applications [19].

It is important to emphasize that the tumor data TR matrix con-
tains both the direct reflections between the target and the receive
array, and secondary reflections between the scatterers, target, and
receiver array coming from multiple paths. The clutter background
subtraction suppresses the clutter reflections and not the secondary
scattering between the target, scatterers, and receiver. Therefor, to
extract the TR data matrix for tumor in the presence of the clutter
combined with the target returns, we use a method based on spatially
sliding windows and synthesizing SVD distributions corresponding
to localized scattering information. When SVD is applied to dif-
ferent subsections of the TR data matrix, the singular values and
corresponding vectors will be combined to synthesize clutter signals
that correspond to different scattering regions. We confirm the ac-
curacy of our proposed imaging method using the electromagnetic
finite difference time domain (FDTD) [20] simulations to detect the
presence of a tumor within an MRI based breast model and contrast
it with conventional Multiple-Input Multiple-output (MIMO) radar
imaging methods.

2. SYSTEM MODEL

In this section, we introduce the observation models representing
the forward and TR probing steps for the localization algorithm
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proposed later in the paper. A known complex bandpass signal
fi(t) exp(j!ct) (!c denoting the angular carrier frequency), trans-
mitted by element i located at xi (for 1  i  N ) of an antenna
array, is backscattered by the target (tumour) with unknown spatial
location rt. After down conversion to baseband, the observations
recorded by element j of the array located at xj in frequency domain
is modeled as a a multiplication of the transmitted signal with the
background Green’s functions through L paths and can be written as

Rij(!) =

LX

l=1

[XijlG0(|rt � xi|l,!)G0(|xj � rt|l,!)Fi(!)]

+ Rc
ij(!)Fi(!) +Nij(!), (1)

where Fi(!) is the Fourier transform of fi(t), and Xijl represents
both the attenuation factor for multipath l connecting receiving ele-
ment j to transmitting element i and the reflection coefficient of the
target. Notations Rc

ij , and Nij(!) are, respectively, the frequency
domain down-converted components of the clutter and noise. A
dispersive, lossy homogeneous medium with uniform conductivity
�(!) is considered for the background Green’s function [11], as

G0(rl,!) ⇡
exp (�jkrl � �(!) ⌘2 rl)p

rl
. (2)

Note that the wavenumber k = !
p
µ✏ and ⌘ =

p
µ/✏ with ✏ and µ

being the permittivity and the permeability of the medium, respec-
tively.

2.1. Conventional MIMO Radar for Breast Imaging

The conventional MIMO radar approach comprises of the following
steps.

1. Conventional Probing: Assuming all transmitted signals be
the same, i.e, F (!), in the matrix form, Eq. (1) is given as

R(!) =
LX

l=1

XlK
l
t(!)F (!)

| {z }
Rt(!)

+Kc(!)F (!) +N(!)
| {z }

Rz(!)

(3)

where K

l
t(!) is the transmit-receive response matrix of the

tumor from path l for 1  l  L and Kc(!) is the clutter
response and the coefficients Xijl = Xl. In terms of the
target channel response Rt(!) is the target response while
Rz(!) contains both the clutter response Kc(!)F (!) and
noise component N(!).

2. Conventional Clutter Suppression: In modeling Kc(!),
we follow the approach presented in [21, 22], where the clut-
ter is characterized in the spatial and spectral domains as a
multivariate complex Gaussian random process. The clutter
return Rc(!) = Kc(!)F (!) changes randomly over time
and when multipath scattering is rich, can be represented as a
random process, whose statistics are modeled as a multivari-
ate complex Gaussian vector with zero mean and covariance
of Rrc(!) [22]. With the noise component N(!) assumed
complex Gaussian, the covariance of the clutter-noise com-
ponent Rz is expressed as Rrz = Rrc +�2

nIN2 . Noting that
the clutter-noise covariance matrix Rrz is a positive definite
matrix, a whitening filter is used to convert the clutter-noise

component to white noise. If the L-path target responses are
summed in Kt(!), then the response matrix ˜

R(!) is given by

˜

R(!) = R

� 1
2

rz Kt(!)F (!)
| {z }

R̃t(!)

+R

� 1
2

rz Rz(!)| {z }
R̃z(!)

, (4)

with the whitened clutter-noise term ˜

Rz(!) ⇠ CN (0, IN2).

2.2. TR-MIMO Radar for breast Imaging

Recall that the TR framework time reverses the observations made
during the forward probing stage and re-transmits them as probing
signals during the TR probing step. In addition to Steps 1-2 outlined
in Section 2.1 for the conventional MIMO radar, the TR-MIMO lo-
calization includes the following steps.

3. TR Probing: The whitened backscatters ˜

R(!) from Eq. (4)
are time-reversed, energy normalized, and are used to probe
the medium a second time. Following the approach used to
derive Eq. (3) in the forward probing step, the TR response
matrix is given by

P(!) = g
LX

l0=1

Xl0K
l0
t (!)˜R

⇤
(!)+Kc(!)˜R

⇤
(!)+W(!),

(5)
where W(!) is the observation noise in the TR step. Substi-
tuting Eq. (3) in Eq. (5) gives

P(!) = g
LX

l0=1

LX

l=1

XlXl0K
l0
t (!)R

�1/2
rz

⇤
K

⇤l
t (!)F ⇤

(!) (6)

+ g
LX

l=1

XlKc(!)R
�1/2
rz

⇤
K

⇤l
t (!)F ⇤

(!)

| {z }
Pc(!)

+ g
LX

l=1

XlK
l
t(!)˜R

⇤
z(!) + gKc(!)˜R

⇤
z(!) +W(!)

| {z }
Pz(!)

.

Eq. (6) decomposes the TR backscatter observation into three
components: target backscatter, clutter returns and noise
component. In [23], we proved that if the number of paths is
large, as in the case for breast imaging [8], the target return
double summation will be reduced to a single summation for
same paths in forward and TR steps. Also, the accumulated
noise component Pz(!) can be approximated as white noise
if the original noise in the conventional probing is white.
Please refer to Appendices A and B in [23] for further details.
Simplifying (6) using the above mentioned results, the TR
observations become

P(!) = g
LX

l=1

|Xl|2Kl
t(!)R

�1/2
rz

⇤
K

⇤l
t (!)F ⇤

(!) (7)

+ Pc(!) +Pz(!)

Noting that the clutter returns in (6) is mixed with the target
returns K⇤l

t (!), simple background subtraction will not work
in this situation. Next section explains a sub-array processing
approach for clutter suppression in the TR-MIMO setup.
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4. TR Clutter Suppression: The idea here is to use a sub-
aperture of length M of the antenna array and study the SVD
of each sub-aperture and the correlations to the neighboring
sub-arrays. For example, the strongest singular value (and
the corresponding vector) corresponds to the surface reflec-
tion from the skin [19]. Using sub-arrays instead of the full
matrix allows us to extract more localized information about
the target and clutter. We develop a spatially sliding window
of length M and use this window for SVD calculations of the
sub-arrays as follows.

P

sub
i (!)vsub

i,m (!) = �sub
i,mu

sub
i,m (!), (8)

where P

sub
i (!) denotes the TR matrix response of the ith

sub-aperture and v

sub
i,m (!), usub

i,n (!), �sub
i,m are respectively,

the mth right and left singular vectors and singular values of
the sub-array i, (i = 1, · · · , N �M + 1, M  N � i + 1,
1  m  M ). Using weighted singular vector distributions,
the clutter can be modeled as [19]

Pc(!) =
PX

m=1

�sub
i,mu

sub
i,m (!). (9)

The number P of singular vectors in (9) is defined by taking
correlation coefficients between the neighboring sub-arrays
to be greater than a threshold ⌧ . Then, the tumor response
Pt(!) after clutter subtraction is given as

Pt(!) = P(!)�Pc(!). (10)

3. COHERENT FFTR-MUSIC IMAGING

For imaging, we apply a coherent method using the concept of fo-
cusing matrices originally proposed in [15, 17] in conjunction with
the TR-MUSIC. This method involves focusing matrices to trans-
form the time reversal operator at different frequency bins onto a
single reference frequency and a coherent focused time reversal op-
erator is achieved. The reference frequency is assumed to be !0

and the unitary focusing matrices [15] for Q frequency bins (!q for
0  q  (Q � 1)) are to be found. These unitary matrices B(!q)

minimize the difference between Pt(!0) and the transformed TR
matrix at frequency !q with the following minimization problem.

min

B(!q)
kPt(!0)�B(!q)Pt(!q)kF (11)

subject to B

H
(!q)B(!q) = I,

where k.kF denotes the Frobenius matrix norm. Applying SVD on
the TR matrix Pt(!q), it has been shown in [15] that the solution to
the problem (11) is given by

B(!q) = V(!q)U
H
(!q), (12)

where V(!q) and U(!q) are the right and left eigenvalues of the
TR matrix Pt(!q). Then, the coherently focused TR operator is
the weighted average of the transformed matrix of TR with unitary
matrix B(!q) as follows

˜

Pt(!0) =

(Q�1)X

q=0

�qB(!q)Pt(!q)B
H
(!q), (13)

Fig. 1: Permittivity of the numerical domain comprised of transmit-
ting and receiving antennas, water, breast skin, breast tissue, tumor,
ribs and muscle between ribs.

Component in
FDTD domain

Permittivity (✏)
⇥ 8.854�12

farad/meter

Conductivity
(�)
Siemens/meter

Water 9 0
Skin 36 4

Tumor 50 4
Breast Tissue Derived from

the MRI image
0.4

Ribs 11.6 4
Muscle 50 8

Table 1: Electromagnetic parameters and values.

where �q is the qth weight proportional to the SNR of the this fre-
quency bin. In summary, we first use the TR matrix to focus on fre-
quency and then by using the focused TR matrix, we apply the TR-
MUSIC to focus spatially on the scatterers. The advantage with this
approach is that only the Green’s function at the focused frequency
is needed for image formation. It is worth noting that for incoher-
ent TR-MUSIC and PC-MUSIC, the array steering vector should be
computed for each frequency bin over the entire grid. The final step
will be to form the pseoudospectrum of FFTR-MUSIC as follows.

A(!0, r) =
g

H
(!0, r)USig(!0)U

H
Sig(!0)g

⇤
(!0, r)

kg(!0, r)k2
, (14)

where USig(!0) is the signal subspace matrix at the focused fre-
quency resulted from the SVD of ˜

Pt(!0) and g(!0, r) = [G(|r �
x1|,!0), · · · , G(|rl � xN |,!0)]

T . Finally, the FFTR-MUSIC im-
age is given by I(r) = (1�A(!0, r))

�1.

4. EXPERIMENTAL STUDY USING FDTD SIMULATIONS

In this study, a numerical analysis using electromagnetic finite dif-
ference time domain (FDTD) was performed in order to detect the
presence of a tumor within an MRI-based breast model. Maxwell
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(a) (b)

Fig. 2: MIMO radar imaging to detect the tumor location: (a) Conventional MIMO radar where the clutter is subtracted from the complete
FDTD results with tumor. Symbol “o” represents the centroid of the tumor and ⇤ represent the peak of the image; and (b) Coherent FFTR-
MUSIC with the TR clutter suppression method.

equations were solved and based on the permittivity (✏) and conduc-
tivity (�) inputs of the model, signals were calculated at the antenna
locations. Four perfectly matched boundary layers (PML), which
are absorbing boundaries, were chosen to avoid reflections from the
edges of the modeling grid. FDTD simulations were performed us-
ing MATLAB with a modified version of codes generated by Irving
and Knight [20]. The overall electromagnetic domain had an 8 ⇥ 8

cm geometry size. For numerically stable FDTD simulations, a tem-
poral step of 0.4 ps was chosen. In order to avoid numerical disper-
sion in the FDTD results, the spatial spacing of �x and �z= 0.1 mm
were chosen in both the axial and lateral directions.
Geometry: In this study, a geometry comprising transmitting and
receiving antennas, water, breast skin, breast tissue, tumor, ribs and
muscle between ribs was simulated. The breast was assumed to
be immersed in a lossless liquid. To simulate the breast tissue, a
magnetic resonance image of a healthy breast was used as shown
in Fig. 1. A logarithm of the breast tissue image was calculated
and the results were scaled so that the mean relative permittivity
to vacuum was 9 [2]. There was a 13.4% variability in permittiv-
ity values. The conductivity values of the breast tissue were set to
� = 0.4 Siemens/meter. The beast boundaries were extracted and
while preserving the boundary shape, a layer of the breast skin was
added manually to the model (Fig. 1). The skin was given a 1-mm-
thickness [24] with relative permittivity of 36 and conductivity of
4 [25]. As the chest wall was not shown in Fig. 1, the ribs and mus-
cles in between the ribs were manually added to the geometry with
appropriate electromagnetic properties [25], [26], [27]. As shown in
Fig. 1, the ribs were 1.5 cm in width and at a 1 cm spacing apart [28].

A 1-mm tumor in radius located 1.5 cm from the chest wall was
manually added to the simulation geometry (Fig. 1). The relative
permittivity and conductivity of the tumor tissue were set to 50, and
4 S/m respectively [29]. Table 1 summarizes the electromagnetic
parameters chosen for the simulations. A 16-element circular trans-
mitting and receiving antenna arrays were placed 0.7 cm away from
the breast. The antennas were 0.5 cm apart from each other. The
data was acquired in a multi-static fashion, i.e., signals are transmit-

ted from each array elements, one antenna at a time, and recorded
by all the antennas. A Gaussian pulse modulated with a 9 GHz car-
rier frequency (fc) was used as the probing signal. The following
equation shows the probing signal used in this study:

f(t) = (1/
p
2⇡t1) exp(�1/2(t/t1)

2
) sin(2⇡fct), (15)

where the pulse width, t1, was 0.05 ns.

Beamforming: As a result of the FDTD simulations, the total sig-
nals sent by each antenna and received by the other 16 were stored
in a 16 ⇥ 16 matrix. In another set of FDTD simulations in which
tumor is not available, we have the clutter response. In order to ex-
clude the antenna coupling, strong skin scattering as well as clutter,
we subtracted the complete FDTD results with tumor from the clut-
ter response for conventional imaging. Fig. 2(a) presents the result
of the tumor detected using conventional MIMO observations R(!)
in comparison with the actual tumor location. It is important to
note that a large scattering from the breast skin was observed in this
figure which distorts the tumor location from its original position.
Fig. 2(b), however shows the result of the TR backscatters ˜

Pt(!0)

to form the FFTR-MUSIC pseudospectrum given in Eq. (14). As
shown in this image, the location of the tumor is close to the orig-
inal tumor location and the skin, ribs and other clutter are almost
removed. Sub-aperture window length of M = 4 with %50 overlap
is selected. The number p in Eq. (9) is selected as 3 with correlation
threshold greater than 0.85 between the neighboring signals.

5. CONCLUSIONS

We conducted numerical FDTD simulations of the proposed TR
beamforming scheme. Our imaging results demonstrate that the
FFTR-MUSIC imager combined with the sliding sub-aperture data
processing for clutter suppression achieves better accuracy, higher
robustness to clutter, and increased resolution than the conventional
direct subtraction MIMO imager.
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