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Abstract—The problem of optimum sparse array beamformer
design to maximize output signal-to-interference-plus-noise ratio
(SINR) in the case of multiple narrowband sources was recently
investigated. This was based on seeking both optimum sensor
placement as well as optimum a single beamformer for all sources
in the array field of view. In this paper, we consider multiple
beamformers with a common sparse array. That is, we deal with
a more prevalent case in radar and communications where each
source is assigned its own beam. This could be the case for both
switched and simultaneous or staring beams. The paper considers
optimum sparse array design for both narrowband and wideband
sources. Analysis and simulation examples demonstrate that the
optimum sparse array configuration depends on both the arrival
angle and the frequency of the incoming signal and it plays a
vital role in determining the performance of multiple beamformer
receivers.
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I. INTRODUCTION

Adaptive array processing strives to counteract interfer-
ences while providing high sensitivity towards the desired
sources. It finds applications in radar, sonar, wireless communi-
cations, radio astronomy, and satellite navigation, to list a few
[1]–[11]. The beamforming performance is not only dependent
on the weight coefficients but also on the array configuration
[12]–[14]. For the same number of antennas, different array
structures yield different output signal-to-interference-plus-
noise ratios (SINRs). As such, optimum sparse array design
should fully utilize both the array structure and array weights
towards achieving the highest possible SINR. The problem of
sparse array design is typically cast as an optimum placement
of a given number of antennas on a uniform grid points or
equivalently selecting a subset from a large set of uniformly
spaced antennas to connect with front-end receivers. The
antenna selection perspective of this problem relies on low-
complexity Radio Frequency (RF) switches [15]–[18], with the
fundamental goal of reducing hardware cost associated with
expensive RF chains. The optimum sparse array in a changing
environment can be adaptively reconfigured through switching
on/off antennas.

The problem of optimum sparse array design for interfer-
ence mitigation in the case of mutiple narrowband sources
was investigated in our previous work [19], [20], where a
single set of weights associated with a single beamformer
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is implemented, aiming at maximizing the total output SINR
of all sources in the field of view (FOV). The maximum
output SINR is the principal eigenvalue of the product between
inverse noise covariance and source correlation matrices [21],
[22]. In addition to limited practical utility, the above scheme
of having a single beamformer generated by one set of weights
suffers from unequal receiver sensitivities towards different
sources. That is, strong, closely-spaced sources are favored
compared to weak, widely separated sources.

Source 1Interference 1 Interference 2

Source 2

w2 w1

Beamfoming 
weights

Output of the second beamformer Output of the first beamformer

Fig. 1. Structure of single common array receiver with multiple beamformers.

In this paper, we consider a general and practical scenario,
where a single, common sparse array is used with different
sets of weights, each corresponding to one source, or one task.
This scenario can represent fixed or switched beam operating
modes [23], [24]. The principal issue is that the common sparse
array configuration influences the beams’ respective gains and
shapes. Therefore, optimality of antenna positions must be ex-
amined in view of the requirements placed on all beamformers
and their respective SINR. The schematic of proposed single
sparse array with multiple beamformers is depicted in Fig.
1. In this paper, we derive optimum sparse arrays for both
narrowband and wideband signals, and demonstrate that the
performance is significantly improved over the case of a single
beamfomer receiver. It is noted that structured arrays, such as
nested or coprime arrays are also sparse, but they are designed
to meet a different objective involving coarrays [25]–[27].

The rest of this paper is organized as follows: We formulate
the problem in section II. Antenna selection algorithms with a
single optimum sparse array and multiple beams in both spatial
and spectral domain is proposed in section III. Simulation
results in section IV validate the proposed methods. Finally,
conclusions are provided in section V.

II. MATHEMATICAL MODEL

Consider a linear array of N isotropic antennas with
positions specified by multiple integer of unit inter-element
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spacing pndu, pn ∈ N, n = 1, . . . , N . Here, the unit inter-
element spacing is set as half the wavelength corresponding to
the design frequency fu, that is du = c/2fu.

Suppose that P narrowband source signals are impinging
on the array from directions {θ1, . . . , θP } and Q narrowband
interfering signals with arrival angles denoted by φ1, . . . , φQ.
The steering vectors of incoming signals can be calculated by,

up = [1, ejπ cos θp , . . . , ej(N−1)π cos θp ]T , p = 1, . . . , P (1)
vq = [1, ejπ cosφq , . . . , ej(N−1)π cosφq ]T , q = 1, . . . , Q.

For broadband signals with a bandwidth of B and center
frequency fc, fu = fc + B

2 . We implement the DFT based
beamformer with a structure plotted in Chapter 6 of [21].
In this case, the broadband signals can be considered as a
superposition of M narrowband signals separated in frequency
by B/M , denoted as fc+∆fk = fc+(B/M)(k−M/2), k =
1, . . . ,M . Without loss of generality, we assume M is even.
It is worth noting that the narrowband signal model applies to
the output of each DFT passband filter. The steering vectors
of the filtered desired and interference signals with frequency
fc + ∆fk are expressed as,

up = [1, e
jπ cos θp(

1+bk
1+Bf/2

)
, . . . , e

j(N−1)π cos θp(
1+bk

1+Bf/2
)
]T , (2)

vq = [1, e
jπ cosφq(

1+bk
1+Bf/2

)
, . . . , e

j(N−1)π cosφq(
1+bk

1+Bf/2
)
]T ,

where bk = ∆fk/fc, Bf = B/fc, p = 1, . . . , P and q =
1, . . . , Q.

In the case of mixed narrowband and broadband signals, we
assume the carrier frequency fl of the lth narrowband signal
falls into the kth DFT band with k =

(
fl−fc
B/M

)
+ M

2 and (•)
truncating the argument to the closest integer. Suppose there
are mk = P +Q+Lk signals falling into the kth DFT band,
comprising P broadband sources, Q broadband interferences
and Lk possible narrowband sources. Clearly, 0 ≤ Lk ≤ L
equals to the number of narrowband sources falling into the
kth DFT band.

In summary, all the cases considered can be decomposed
into the superposition of narrowband signal models. In the
sequel, we take the narrowband signal model as an example
to delineate the common sparse array design associated with
different beamformers. We assume all source and interference
angles are known or already estimated. Denote the weight
vector of the pth beamformer as wp, p = 1, . . . , P . The Capon
beamformer aims at minimizing the total output variance while
constraining the response towards the pth narrowband signal
to be unity. The weight vector of Capon beamformer is well
known and given by [28],

wp =
1

uHp R−1p up
R−1p up, (3)

where Rp is the covariance matrix of received signal excluding
the pth narrowband signal of interest (SOI). It comprises of the
Q interferences, the remaining P − 1 narrowband sources and
the white noise. That is,

Rp =

P∑
k=1,k 6=p

σ2
sk

σ2
n

ukuHk +

Q∑
q=1

σ2
jq

σ2
n

vqvHq + I, (4)

where σ2
jq , σ

2
sk and σ2

n denote the qth interference power, the
kth narrowband signal power and the noise power, respectively.
Clearly, when the pth narrowband signal is the SOI, all other
sources are viewed as the interfering signals. Utilizing Eq. (3),
we obtain the array gain of the Capon beamformer towards the
pth narrowband signal. That is,

Gp = uHp R−1p up. (5)

Utilizing the matrix inversion lemma, the inverse covariance
R−1p can be written as,

R−1p = I− B(Cj + BHB)−1BH , (6)

where B = [u1, . . . ,up−1, v1, . . . , vQ] and Cj is a diagonal
matrix with diagonal entries σ2

n

σ2
sk
, k = 1, . . . , P, k 6= p and

σ2
n

σ2
jq
, q = 1, . . . , Q. Substituting Eq. (6) into Eq. (5) yields,

Gp = uHp R−1p up, (7)

= uHp up − uHp B(Cj + BHB)−1BHup,

=

∣∣BHp Bp + C
∣∣∣∣BHB + Cj
∣∣ ,

where Bp = [B,up], and the extended interference covariance
matrix is,

C =

[
Cj 0(Q+P−1)×1

01×(Q+P−1) 0

]
. (8)

The equivalence between the second and third lines of Eq. (7)
can be proved through block matrix determinant formula.∣∣BHp Bp + C

∣∣ =

∣∣∣∣ BHB + Cj BHup
uHp B uHp up

∣∣∣∣ , (9)

= |BHB + Cj |Gp.

We can observe that the array configuration affects array gain
of Capon beamformer through the SOI steering vector up and
the interference array manifold matrix B.

III. OPTIMUM SPARSE ARRAY DESIGN FOR MULTIPLE
BEAMFORMERS

The optimum sparse array design can be cast as selecting K
out of N candidate grid locations for antenna placement with
the antenna weights determined by Capon beamforming. De-
note a grid selection vector z = [zi, i = 1, . . . , N ] ∈ {0, 1}N
with “zero” entry for a discarded location and “one” entry for a
selected one. The diagonal matrix D(z) is the antenna selection
operator with the vector z populating along the diagonal. Since
all N grid points are known, the full array manifold vector
corresponding to the SOI and interferences can be calculated
in advance. Since steering vectors are directional, the steering
vectors of a sparse array, with selected K antennas in relation
to the full array of N antennas, can be expressed as D(z)up
and D(z)vq . Correspondingly, the array gain of sparse arrays
for the pth narrowband signal can be expressed as,

Gp =

∣∣BHp D(z)Bp + C
∣∣∣∣BHD(z)B + Cj
∣∣ . (10)

Multi-beamformer design assumes a common sparse array and
different sets of weights for different SOI. If we set the array

3365



gain towards each SOI to be at least γ, then the optimum
sparse array design can be formulated as,

max
z

γ, (11)

s.t. log|BHp D(z)Bp + C| − log|BHD(z)B + Cj | ≥ γ,
p = 1, . . . , P

z ∈ {0, 1}N , 1T z = K.

Clearly, the first set of constraints in Eq. (11) belongs to the
difference of two concave functions (D.C.), and the global
optimizer of D.C. functions locates at the edge of the poly-
hedral [29], [30]. This property can be utilized to relax the
boolean constraint of the selection vector z ∈ {0, 1}N to the
box constraint 0 ≤ z ≤ 1. To further promote the boolean
property of the selection vector z, we modify the objective
function in Eq. (11) as γ + τzT (z − 1) with the relaxed box
constraints as follows.

max
z

γ + τzT (z− 1), (12)

s.t. log|BHp D(z)Bp + C| − log|BHD(z)B + Cj | ≥ γ,
p = 1, . . . , P

0 ≤ z ≤ 1, 1T z = K.

Here, τ is a trade-off parameter that controls the relative
importance between the array gain and boolean property of
the selection vector z. Except for the D.C. constraints, the
objective function in Eq. (12) also becomes non-convex. A
sequential convex programming (SCP) based on iteratively
linearizing the second convex function of the objective and
the second concave function of the constraints is then utilized
to reformualte the non-convex problem to a series of convex
subproblems, each of which can be optimally solved using
convex programming [31], [32]. The antenna selection in the
(k+1)th iteration can be formulated based on the solution z(k)
from the kth iteration as,

max
z

γ + τ [(2z(k) − 1)T z− z(k)T z(k)], (13)

s.t. log|BHp D(z)Bp + C| −∆gT1 (z(k))(z− z(k)) ≥ γ,
p = 1, . . . , P

0 ≤ z ≤ 1, 1T z = K.

where ∆g1(z(k)) is the gradient of the concave function
log|BHD(z)B + Cj | evaluated at the point z(k). That is,

∆g1 = [bHr,i(BHD(z(k))B + Cj)−1br,i, i = 1, . . . , N ]T ,

with br,i denoting the ith column vector of the matrix BH .
Note that the SCP is a local heuristic and its performance
depends on the initial point z(0). It is, therefore, typical to
initialize the algorithm with several feasible points z(0) and
find the one with the maximum objective value over the
different runs. The Matlab embedded software package CVX
[33] is utilized to solve the optimization problem in Eq. (13).
The simulation results in section IV show that the obtained
iterative solution agrees well with the true optimum solution
from enumeration, which manifests the effectiveness of the
SCP algorithm for solving D.C. problems.

IV. SIMULATIONS

In this section, simulation results are presented to validate
the proposed sparse array design for multiple beamformers.

A. The case of multiple narrowband sources

Consider K = 10 available antennas and N = 20
uniformly spaced positions with an inter-element spacing of
d = λu/2 and λu being the wavelength corresponding to fu =
310MHz. Assume that three narrowband sources are impinging
on the array from directions θ1 = 50◦, θ2 = 60◦, θ3 = 115◦

with the SNR being [5, 2, 0] dB, respectively. There are two
interfering signals arriving at φ1 = 54◦, φ2 = 122◦ with
the respective interference-to-noise ratios (INRs) being 10dB
and 30dB. We first calculate the optimum sparse array cor-
responding to each source separately. The structures of three
individual sparse arrays, referred to as arrays (a), (b) and (c),
are shown in Fig. 2. The configuration of the common sparse
array for all the three sources but separate beamformers, is
the same as array (a). The reason is that the array gain of
the first source is the lowest, and sparse array (a) is capable
of guaranteeing a robust performance for all the three sources
considered. For comparison, the optimum sparse array with
a single beamformer, termed as array (d), is provided at the
bottom of Fig. 2.

We calculate respective array gain of four sparse arrays
towards the three sources, as displayed in Table I. Note that
the maximum array gain of an arbitrary 10-antenna array is
no more than 10dB. The Capon beampatterns of the sparse
array (a) associated with three beamformers are plotted in
Fig. 3 (i)-(iii), where each source assumes a different set of
weight coefficients. We also plot the beampattern of the sparse
array (d) in Fig. 3 (iv), where the common weight vector
for three sources is the principal eigenvector of the product
of inverse noise covariance and source correlation matrices.
Clearly, the sparse arrays (a)-(c) exhibit the maximum array
gain toward the first, second and third source, respectively. The
sparse array (d) demonstrates extremely uneven sensitivities
towards the three sources, and completely ignores the third
weak and widely separated source. The beampatterns of the
multi-beamformer array (a), shown in Fig. 3 (i)-(iii), exhibits
three respective peaks towards the sources and four nulls
against the interferences and other two sources. Note that the
beampatterns exhibit unwanted high sidelobes, as the array
optimization criterion is maximizing the output SINR without
considering beampattern shape. The additional constraints can
be imposed into the formulation in Eq. (11) for a better-shaped
beampattern, while unavoidably sacrificing output SINR.

In order to verify the effectiveness of the proposed sparse
array design algorithm formulated in Eq. (13), we vary the
arrival angle of the third source from 0◦ to 180◦ in step of
1◦. For each source arrival angle, we find the corresponding
optimum sparse array per Eq. (13) using 100 different initial
points. For algorithm validation, we also obtain the true
optimum sparse arrays through enumeration and compare their
output SINR values in Fig. 4. Clearly, the proposed algorithm
can return a satisfactory sub-optimal solution with output SINR
difference upper bounded by 0.3dB.

B. The case of wideband sources

Consider the case of three wideband sources with a center
frequency fc = 300MHz and bandwidth B = 20MHz
arriving from θ = [50◦, 60◦, 115◦] with SNR being 0dB. The
interfering signals are also wideband and other information
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2 4 6 8 10 12 14 16 18 20
(b) optimum sparse array for source 2

2 4 6 8 10 12 14 16 18 20
(c) optimum sparse array for source 3

2 4 6 8 10 12 14 16 18 20
(d) optimum sparse array for single beamformer

2 4 6 8 10 12 14 16 18 20
(a) optimum sparse array for source 1 and three separate beamformers

Fig. 2. Optimum sparse arrays (a), (b), (c) for three sources respectively and
optimum sparse array (d) for single beamformer. Sparse array (a) is also the
common optimum sparse array for three beamformers.

TABLE I. THE ARRAY GAIN OF SPARSE ARRAYS (A)-(D) TOWARDS
THREE SOURCES

arrays source 1 source 2 source 3
array (a) 8.94dB 9.3dB 9.06dB
array (b) 8.45dB 9.89dB 9.77dB
array (c) 8.43dB 9.88dB 10dB
array (d) 9.54dB 7.83dB -7.96dB
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Fig. 3. (i)-(iii) Beampatterns of the array (a) associated with three beam-
former; (iv) Beampattern of array (d) associated with a single beamformer.
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Fig. 4. The difference of output SINR of sparse arrays obtained through the
proposed algorithm and enumeration.

remains the same as above. There are M = 16 DFT frequency
bins. We find the optimum sparse array for each wideband
source over its spectrum. These arrays, termed (e)-(h), are
depicted in Fig. 5. The optimum sparse array in the frequency
bin of f = 310MHz is actually array (a) in Fig. 2. We can

see that the configuration of optimum sparse arrays differs
with different signal frequencies. Note that there are three
beamformers associated with the sparse array in each DFT
bin. The beampatterns of three wideband beamformers over
the spectrum are plotted in Fig. 6. Each beamformer com-
prises different array configurations and weight coefficients in
different DFT bins. We also plot the beampatterns of sparse
array (d) with a single beamformer for comparison. We can
observe that the beampatterns towards each source are almost
the same in different DFT bins with the beam pointing at the
designated source and nulls against the interferences and other
sources. The single beamfomer fails to offer equal sensitivities
towards all sources in the receiver FOV.

2 4 6 8 10 12 14 16 18 20
(e) optimum sparse array for f=290MHz−296.25MHz

2 4 6 8 10 12 14 16 18 20
(f) optimum sparse array for f=297.5MHz

2 4 6 8 10 12 14 16 18 20
(g) optimum sparse array for f=298.75MHz

2 4 6 8 10 12 14 16 18 20
(h) optimum sparse array for f=300MHz−308.75MHz

Fig. 5. Configuration of optimum common sparse arrays (e)-(h) in different
frequency bins.
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Fig. 6. (i)-(iii): The beampatterns of three beamformers for three 20MHz
wideband signals in 16 DFT bins. (iv) The beampatterns of the array (d) with
a single beamformer.

V. CONCLUSIONS

We examined the problem of optimum sparse array design
for multiple beamformers through antenna selection in the
presence of narrowband and wideband sources. Unlike the
previous work dealing with a single beamformer for all sources
in FOV, we deployed in this paper a single sparse array but
with different sets of weights, each beamformer is designated
to one SOI. Simulation results demonstrated the significant
role of array configurations in determining array output SINR
performance when using multiple beams whether it is for fixed
or switched beam scenario.
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