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ABSTRACT

We propose binary neural networks (BNNs) for acoustic beamform-
ing. This makes the speech enhancement approach resource efficient
and applicable for embedded applications. Using CHiME4 data,
we use BNNs to estimate the speech presence probability mask for
GEV-PAN beamformers. By doing so, we achieve audio quality and
ASR scores on par to single-precision deep neural networks (DNNs),
while the computational requirements and the memory footprint are
significantly reduced.

Index Terms— GEV-PAN beamformer, Binary Neural Net-
work, Reduced Precision, Speech Enhancement

1. INTRODUCTION

Deep neural networks (DNNs) achieve impressive performances
in many applications such as computer vision [1], speech recogni-
tion [2], and machine translation [3], among others. This is partic-
ularly true when having big amounts of data and almost unlimited
computing resources available. However, in real-world scenarios the
computing infrastructure is often limited.

When having only computing architectures with limited re-
sources available, DNNs cannot run efficiently anymore, e.g. low-
cost embedded hardware often does not have sufficient amount of
memory, power or processing units to run DNNs efficiently. There is
an emerging trend in developing NN architectures that can be evalu-
ated in a fast and energy-efficient way requiring only little memory
for the parameters. Several efforts have been made to reduce the
number of bits required to store the weights which usually results
in faster computation and a smaller memory footprint. Recently,
methods have been proposed which learn double precision weights
and then reduce the number of bits until the classification perfor-
mance starts to degrade [4]. This direction of research has been
pushed towards NNs that require in the extreme case only a single
bit per weight, i.e. expensive floating point operations reduce to
simple bit operations [5,6]. One approach to train NNs with discrete
weights and activation functions, whose derivative is zero almost
everywhere, is based on the straight through gradient estimator [7].
Using this straight through estimator allows to train DNNs with
binary weights [5,8]. The use of binary weights dramatically reduce
the computational requirements and memory footprint, and hence
support to use the DNNs on resource constrained architectures.
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Recently, in several speech enhancement applications single-
precision DNNs have been used to outperform traditional model-
based algorithms. Appreciable examples in the field of acoustic
beamforming include [9–12], where a DNN estimates the speech
mask which is used to determine the power spectral density (PSD)
matrices of the multi-channel speech and noise signals. With these
PSD matrices a beamforming filter such as the minimum variance
distortionless response (MVDR) beamformer or generalized Eigen-
vector (GEV) beamformer can be obtained. In [12], we proposed
deep eigenvector beamforming, where we used the dominant eigen-
vector of the noisy speech PSD matrix as feature vector and DNNs
to estimate the speech mask. Those DNNs achieve impressive
performances, but these models are inefficient when it comes to
computational and memory requirements. In a recent paper we re-
duce the computational requirements of our speech mask estimator
using logistic regression [13]. This approach reduces the number of
parameters by a factor of 100.

In this paper, we go a step further. We propose DNNs with
binary weights for the estimation of the speech mask. In particular,
the time consuming multiplication of input x by weight matrix W
in a DNN is replaced by XNOR operations. This reduces the com-
putational requirements and memory footprint and we are able to
run the DNN on small embedded architectures. In our experiments
we observe that the estimation of the speech mask by binary neu-
ral networks (BNNs) for the GEV beamformer achieves consistent
audio quality and ASR scores compared to a single-precision DNN
baseline, using CHiME4 data. Furthermore, our BNN enables a
computation speedup by a factor of 5.7 and 11.7 on a GPU and
ARM processor, respectively.

This work is organized as follows: Section 2 introduces deep
GEV beamformers. In Section 3, BNNs for speech mask estima-
tion are discussed. Section 4 lists experimental results. In particular,
the speech mask accuracy, the perceptual audio quality and speech
recognition results of the GEV beamformer are shown. Further-
more, the computational complexity of BNNs is evaluated on ARM,
GPU and field programmable gate arrays (FPGAs) and compared to
single-precision DNN baselines. Section 5 concludes the paper.

2. DEEP EIGENVECTOR BEAMFORMING

In our beamforming setup, we assume a single speech source em-
bedded in ambient noise. The array consists of M microphones,
arranged into an arbitrary array geometry. Figure 1 shows the main
components of the deep eigenvector beamformer.
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Fig. 1. System overview, showing the microphone signals Zm(k, l)
and the beamformer+postfilter output Y (k, l) in frequency domain.

The deep eigenvector beamformer employs the GEV beam-
former [14, 15] and the phase-aware-normalization (PAN) postfilter
introduced in [13].

The beamformer requires a speech mask pSPP (k, l) for each
frequency bin k and time frame l. This mask is estimated from the
dominant eigenvector of the noisy speech PSD ΦZZ , which is ob-
tained using recursive averaging: ΦZZ(k, l) = ΦZZ(k, l − 1)α +
(1− α)Z(k, l)ZH(k, l), where 0 ≤ α ≤ 1 is a smoothing parame-
ter and Z(k, l) = [Z1(k, l), ..., ZM (k, l)]H .
The eigenvalue decomposition of the noisy speech PSD matrix gives
ΦZZ(k, l) =

∑M
m=1 λZm(k, l)vZm(k, l)vH

Zm
(k, l), where λZm(k, l)

and vZm(k, l) are its eigenvalues and eigenvectors, respectively
[16].

The DNN used for speech mask estimation uses the cosine sim-
ilarity between neighboring eigenvectors, i.e.

x∆(k, l) = |vZ1(k, l)HvZ1(k, l −∆)| (1)

as input features, where vZ1(k, l) denotes the dominant eigenvec-
tor of ΦZZ(k, l). Note that each feature x∆(k, l) compresses the
information of all M channels into a scalar value between 0 and 1,
it is therefore independent of the signal energy and the number of
microphones being used in the setup. To observe a significant differ-
ence between two neighboring eigenvectors, the matrix ΦZZ(k, l)
has to be updated with a sufficiently small time constant. During
speaker activity, x∆(k, l) is close to one, and close to zero in case of
undirected ambient noise. Further details of GEV-PAN can be found
in [13].

3. TRAINING DNNS USING BINARY WEIGHTS

We replace the DNN used for mask estimation with a BNN [5, 17–
19]. This makes the speech enhancement approach resource effi-
cient.

A single layer of a BNN is shown in Figure 2.

xnor(x, W) batch-norm. sign
x(k, l) y(k, l)

Fig. 2. BNN layer.

Instead of multiplying any arbitrary input x(k, l) by the weights
W, a BNN uses a single XNOR operation for each input and accumu-
lates the output. Then batch-normalization [20] and a non-linear ac-
tivation function is applied. Due to binary weights the sign function
is used as activation. Batch-normalization is efficiently computed
by combining thresholding with the sign activation function [21],
removing the need for a float32 operation within the network layer.
This specific structure of the network makes the model very effective
in terms of computational needs and memory. The network operates

in integer range and can be effectively ported to a DSP or FPGA
architecture.

When embedding BNNs in a GEV beamformer, we have to
scale the inputs and outputs of the NN to an appropriate range.
Therefore, we propose a simple and effective conversion of the
eigenvector features to the integer range. Given single-precision
eigenvector features x∆(k, l) in the range between zero and one,
we scale x∆(k, l) to 8bit integer values in the range +-127. After
applying the BNN, we rescale the network’s output to the output
range of the pSPP , i.e {0, 1} ∈ R and obtain the estimated speech
presence probability mask. This deep binary speech mask estimator
is shown in Figure 3.

scaling binary NN re-scalingbinary NN
p̂SPP (k, l)x∆(k, l)

< float32 >

x∆(k, l)

<int8>

y(k, l)

<int8> <float32>

pSPP estimator

Fig. 3. Binary pSPP estimator.

Training a BNN is more difficult [5]. In particular, we replace
xnor() and sign() functions by common single-precision multipli-
cations and tanh activations, rounded to the range {−1, 1}. For
the forward-propagation process, we round the continuous weights
{W1, ...,WL} ∈ R to binary weights θb = {W1, ...,WL} ∈
{−1, 1} and compute a forward-path over multiple layers using a
linear output layer. Clipping the accumulated values of the vector-
matrix products to a fixed bit width of eight further reduces the
complexity of the NN and prevents overflows. After obtaining
an output activation with the binary forward-path, we determine
the MSE and propagate the gradient through the network (straight
through estimation) [5]. Non-differentiable functions are linearly
approximated and the gradient is determined for continuous weights,
which are updated. Further details can be found in [5, 21].

4. EXPERIMENTAL RESULTS

4.1. Database

To evaluate the binary deep GEV beamformer, we use the CHiME4
corpus [22]. CHiME4 provides 2 and 6-channel recordings of a
close-talking speaker corrupted by four different types of ambient
noise. The database consists of a training set (tr05), a validation
set (dt05) and a test set (et05). Ground truth utterances (i.e. the
separated speech and noise signals) are available for all recordings
and the true speech masks p̂SPP,opt(k, l) can be computed [16].
Once trained, the deep binary GEV beamformer provides a predic-
tion pSPP (k, l) for each utterance; required to calculate ΦSS(k, l)
and ΦNN (k, l) [23]. We use a STFT window length of 32ms for
determining ΦZZ(k, l) and an overlap of 50% to process the data.
The averaging window length for PSD estimation is T = 250ms. The
speech and noise PSD estimates are used to construct the GEV-PAN
beamformer. We use all utterances (real and simu) from the train
(tr05), the validation (dt05) and test set (et05).
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4.2. Evaluating the Speech Mask Accuracy

We used a fully connected 3-layer BNN with a linear output
layer for all 2 and 6 channel experiments. The cosine simi-
larity x∆ was determined for ∆=1. The BNN was trained us-
ing ADAM [24] with default parameters using framewise inputs
x∆=1(l) = [x∆=1(1, l), ..., x∆=1(k, l)]T and the speech mask
probabilities pSPP . Dropout with a probability of 0.25 was used
during training. We used a single-precision 3-layer network with
513 neurons per layer and BNNs with 513 and 1024 neurons per
layer.

model neurons / layer channels train valid test
DNN 513 2ch 5.8 6.2 7.7
BNN 513 2ch 6.2 6.2 7.9
BNN 1024 2ch 6.2 6.6 7.9
DNN 513 6ch 4.5 3.9 4.0
BNN 513 6ch 4.7 4.1 4.4
BNN 1024 6ch 4.9 4.2 4.1

Table 1. Mask prediction error L in %.

Table 1 reports the mask predictions error

L =
100

KL

K∑
k=1

L∑
l=1

∣∣p̂SPP (k, l)− pSPP,opt(k, l)
∣∣. (2)

Single precision networks achieved the best prediction error.
The BNNs achieve comparable results. Doubling the networks size
of BNNs slightly improved the error on the test set.

Fig. 4. (a) True speech mask pSPP,opt(k, l); (b) prediction of
p̂SPP (k, l) by DNN (c) prediction of p̂SPP (k, l) by BNN.

Figure 4 shows the speech mask of the BNN for the utterance
F01 22HC010W BUS. Panel (a) shows the optimal speech mask
pSPP,opt, and panel (b) and (c) show the predicted speech masks
for the DNN with 513 neurons/layer and the BNN with 1024 neu-
rons/layer, respectively.

4.3. Evaluating the Perceptual Audio Quality

Given the predicted speech mask p̂SPP (k, l), we construct the GEV-
PAN beamformer [25] for both the 2 and 6-channel data. The Over-
all Perceptual Score (OPS) [26] and PESQ [27] were used to evalu-
ate the performance of the resulting speech signal Y (k, l) in terms of
perceptual speech quality. Ground truth estimates required for these
scores are obtained using the pSPP,opt(k, l) and the GEV-PAN.

method set train valid test
CHiME4 baseline simu 1.35 1.31 1.26
(BeamformIt), 5ch [22] real 1.35 1.28 1.37
CGMM-EM with MVDR simu 1.79 1.59 1.51
and postfilter, 6ch [28] real 1.53 1.41 1.44
DNN (513 neurons / layer) simu 2.16 2.12 2.35
with GEV-PAN, 2ch real 2.14 2.02 1.94
BNN (513 neurons / layer) simu 2.00 1.97 2.10
with GEV-PAN, 2ch real 1.82 1.82 1.60
BNN (1024 neurons / layer) simu 2.00 2.19 2.59
with GEV-PAN, 2ch real 2.16 2.10 2.07
DNN (513 neurons / layer) simu 2.54 2.57 2.94
with GEV-PAN 6ch real 2.47 2.41 2.33
BNN (513 neurons / layer) simu 2.08 1.97 2.17
with GEV-PAN, 6ch real 2.00 2.51 1.99
BNN (1024 neurons / layer) simu 2.04 2.05 2.24
with GEV-PAN, 6ch real 2.00 1.93 1.71

Table 2. PESQ scores.

Table 2 lists the PESQ scores of both DNNs and BNNs using the
GEV-PAN beamformer. All models achieved solid PESQ scores on
all datasets, outperforming the CHiME4-baseline enhancement sys-
tem, i.e. the BeamformIt!-toolkit [22], and the front-end of the best
CHiME3 system [28], i.e. CGMM-EM. The 2-channel BNN with
1024 neurons/layer obtained a slightly better score than its single-
precision DNN baseline. Using 6-channel data, the single-precision
DNN achieved the best result.

method set train valid test
CHiME4 baseline simu 33.11 34.73 31.46
(BeamformIt), 5ch [22] real 29.97 36.45 36.74
CGMM-EM with MVDR simu 52.15 43.02 40.59
and postfilter, 6ch [28] real 44.95 41.89 36.87
DNN (513 neurons / layer) simu 64.21 61.74 56.32
with GEV-PAN, 2ch real 64.21 62.72 56.32
BNN (513 neurons / layer) simu 58.11 57.58 57.58
with GEV-PAN, 2ch real 56.79 57.52 41.24
BNN (1024 neurons / layer) simu 61.64 60.78 54.20
with GEV-PAN, 2ch real 61.64 60.78 45.22
DNN (513 neurons / layer) , simu 67.98 66.76 68.71
with GEV-PAN 6ch real 69.98 70.33 63.28
BNN (513 neurons / layer) with simu 61.44 55.87 62.39
with GEV-PAN, 6ch real 63.03 64.77 64.52
BNN (1024 neurons / layer) simu 65.59 64.98 68.41
with GEV-PAN, 6ch real 67.91 68.41 59.94

Table 3. OPS scores.

Table 3 reports the OPS given the enhanced utterances using 2-
channel and 6-channel data. Again good results are achieved using
the GEV-PAN beamformer. Doubling the network size of BNNs
mostly improves the OPS scores. In general, BNNs achieve on aver-
age a slightly lower OPS score than the single-precision DNN base-
line, on both 2-channel and 6-channel data.
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4.4. Evaluation by Automatic Speech Recognition

Table 4 reports the word error rate (WER) for the 2 and 6 chan-
nel data using DNNs and BNNs with a GEV-PAN beamformer.
Google’s speech recognition service1 was used to obtain WERs in
all experiments. Groundtruth transcriptions were generated using
original WSJ0 recordings.

method set train valid test
DNN (513 neurons / layer) simu 10.47 15.25 25.61
with GEV-PAN, 2ch real 27.56 12.04 27.56
BNN (513 neurons / layer) simu 12.13 16.52 31.24
with GEV-PAN, 2ch real 26.17 16.26 35.38
BNN (1024 neurons / layer) simu 11.01 15.58 27.56
with GEV-PAN, 2ch real 24.69 15.56 30.62
DNN (513 neurons / layer) simu 9.80 13.66 15.31
with GEV-PAN, 6ch real 23.79 9.58 18.68
BNN (513 neurons / layer) simu 11.59 15.29 16.56
with GEV-PAN, 6ch real 24.7 13.57 21.18
BNN (1024 neurons / layer) simu 10.71 14.78 16.11
with GEV-PAN, 6ch real 24.01 13.40 20.29

Table 4. WER scores for our experiments.

Interestingly, for both DNNs and BNNs the WER of the 2 chan-
nel test utterances is large. However, when using 6 microphones, the
WERs on both simulation and real test set are significantly improved.
In general, BNNs achieve similar results compared to DNNs. In case
of 6-channel experiments, the best WER was obtained by DNNs.

4.5. Evaluating the Computational Complexity

General-Purpose Processors: In order to show the advantages of
binary computation on general-purpose processors, we implemented
matrix-multiplication operators for NVIDIA GPUs and CPUs. From
computational perspective, the classification of BNNs can be imple-
mented very efficiently as binary-scalar products. Matrix multipli-
cations can be computed by bit-wise xnor() operation, followed by
counting the number of set bits with popc():

x ∗ y = N − 2 ∗ popc(xnor(x, y)), xi, yi ∈ [−1,+1]∀i (3)

We use the matrix-multiplication algorithms of the MAGMA
and Eigen library and replace float multiplications by xnor() oper-
ation, as depicted in Equation 3. Our CPU implementation uses
NEON vectorization in order to fully exploit SIMD units on ARM
processors. We report execution time of GPU and ARM CPU in
Table 5. We don’t report performance results of x86 architectures
because neither SSE nor AVX ISA supports vectorized popc().

arch neurons time (float32) time (binary) speedup
GPU 256 0.14ms 0.05ms 2.8
GPU 513 0.34ms 0.06ms 5.7
GPU 1024 1.71ms 0.16ms 10.7
GPU 2048 12.87ms 1.01ms 12.7
ARM 256 0.42ms 0.42ms 8.7
ARM 513 1.43ms 1.43ms 11.7
ARM 1024 8.13ms 8.13ms 13.4
ARM 2048 771.33ms 58.81ms 13.1

Table 5. Performance metrics for matrix · matrix multiplications on
a NVIDIA Tesla K80 and ARM Cortex-A57.

1https://developers.google.com/api-client-library/python/

As can be seen, binary calculations clearly outperform float32
calculation in terms of execution time. This also affects energy
consumption since binary values require less off-chip accesses and
operations.

Specialized Processors: Probably the most promising candidate
for binary computations are FPGAs. Applying binarized neural
networks on FPGAs has several advantages (compared to float,
fixed-point, and integer networks) which enable faster classification,
better energy efficiency, and less expensive hardware. Using logic
operations for multiplications and popc() for accumulations results
in higher resource efficiency because requirements on look up tables
and flip flops decrease significantly. Further, Umuroglu et al. [21]
showed that batch normalization and activation can be implemented
efficiently by pre-computing thresholds and only using unsigned
comparisons which reduces parameter size and resource require-
ments. Finally, using binary weights reduces parameter size by a
factor of 32 - compared to float32 - which allows the use of cheaper
hardware (model parameters have to be saved in the scarce block
RAM). Table 6 compares parameter size and device costs (Xilinx
Spartan-7 series) of the binary and float32 implementations.

3 layer DNN/BNN (513 neurons / layer)
Type Par. Size Device Mem. Util. Cost (USD)

float32 3.15 MB XC7S100 73% 181.10
binary 0.10 MB XC7S6 56% 22.33

3 layer DNN/BNN (1024 neurons / layer)
Type Par. Size Device Mem. Util. Cost (USD)

float32 7.35 MB XC7S100 170% 181.10
binary 0.23 MB XC7S15 64% 24.87

Table 6. Parameter and cost (retail cost Avnet) comparison for
float32 and binary weights.

As shown in Table 6, the costs for chip requirements differ sig-
nificantly between 32-bit and binary models. Further, the binary
models show rather low memory utilization (and therefor more ap-
plication potential) on the selected chips, whereas the 32-bit imple-
mentation of the larger DNN exceeds the largest chip of the Spartan-
7 series.

5. CONCLUSIONS AND FUTURE WORK

We proposed neural networks with binary weights for acoustic
beamforming. This makes the speech enhancement approach re-
source efficient and applicable for embedded systems. In particular,
we used BNNs to estimate the speech mask pSPP . This mask allows
to estimate the noise and speech power spectral density matrix used
to determine the GEV-PAN beamformer. By doing so we achieve
audio quality and ASR scores on par to single-precision DNNs,
while the computational requirements and the memory footprint
are significantly reduced. In future work, we aim to analyze tenary
weights [29] for performance improvements.
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