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ABSTRACT
In this paper, two novel robust widely linear beamforming
algorithms based on the technique of shrinkage are pro-
posed, i.e., the WL-RBLW and the WL-OAS. Firstly, in
order to remove the signal-of-interest’s (SOI’s) component
from the sample covariance matrix (SCM), the augmented
interference-plus-noise covariance matrix (A-IPNCM) is re-
constructed based on the spatial spectrum of noncircular
coefficient. Then, a modified Rao-Blackwell Ledoit-Wolf
(RBLW) estimator and a modified Oracle Approximating
Shrinkage (OAS) estimator are developed to directly estimate
the desired signal’s extended steering vector. Only the prior
knowledge of the antenna array geometry and the angular
sector in which the desired signal is located are utilized in the
proposed algorithms. Compared with several representative
robust WL beamformers, numerical simulations demonstrate
that the proposed beamformers can achieve a better perfor-
mance.

Index Terms— Widely linear beamforming, noncircular
signal, augmented covariance matrix reconstruction, shrink-
age method, signal steering vector estimation

1. INTRODUCTION

Adaptive traditional beamforming techniques have mainly
considered the second-order (SO) circular signals [1–4].
Nevertheless, the SO noncircular and nonstationary signals
are often encountered in the areas of radio communication
and satellite communication, such as amplitude-shift keying
(ASK), binary phase-shift keying (BPSK), and unbalanced
quaternary phase-shift keying (UQPSK) [4, 5]. For this class
of signals, conventional beamforming algorithms, such as
minimum variance distortionless response (MVDR) beam-
former, are shown to be suboptimal, and the optimal complex
filters become widely linear (WL) [6]. In order to exploit the
noncircularity of the desired signal, the optimal WL-MVDR
beamformer was developed and analyzed in [7] and [2, 8],
respectively. However, the optimal WL-MVDR is limited
in practical applications since the desired signal’s noncircu-
larity coefficient and steering vector (SV) should be known
precisely [6]. Therefore, many robust WL beamforming al-
gorithms have been proposed to settle this problem [6, 9–12].
Wang’s method [9] can handle the uncertainties of the non-
circularity coefficient and array SV, while it is sensitive to the
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large mismatch of noncircularity coefficient. In addition, two
WL-minimum dispersion based beamforming algorithms are
proposed by Huang et al. to fully exploit the noncircularity
and sub-Gaussian properties of signals [10]. In [11], the non-
circular robust Capon beamformer (NC-RCB) is proposed
to study the SO noncircularity of both the signal-of-interest
(SOI) and interferences. In [12], a robust WL beamformer
is proposed on the basis of a projection constraint. As we
know, the WL beamformers [9–12] will suffer severe perfor-
mance degradation at high signal-to-noise ratio (SNR) since
the SOI’s component is contained in the sample covariance
matrix (SCM). In order to further improve the robustness
of the WL beamformer at high SNR, the spatial spectrum
of noncircularity coefficient is firstly introduced to construct
the augmented interference-plus-noise covariance matrix (A-
IPNCM) [6]. Moreover, the WL beamformers [6, 10, 12] are
difficult to be applied in practical engineering due to their
high computational burden.

To avoid high computational cost, two low-complexity ro-
bust WL beamformers, i.e., the WL-RBLW and the WL-OAS,
are proposed in this paper. Firstly, we propose a new method
to calculate the spatial spectrum of the noncircular coefficient,
and subsequently reconstruct the A-IPNCM. Then, based on
the cross correlation between the observation vector and the
WL beamformer’s output, a modified Rao-Blackwell Ledoit-
Wolf (RBLW) estimator and a modified Oracle Approximat-
ing Shrinkage (OAS) estimator are developed to estimate the
desired signal’s extended steering vector (ESV).

Notation: Matrices (vectors) are denoted by boldface up-
percase (lowercase) letters. The superscriptions ∗, T and H
denote the conjugate, transpose and Hermitian transpose, re-
spectively. The notations I, 1, E{·}, ‖ · ‖, Tr(·), 〈·〉, ‖ · ‖F
stand for the unit matrix, all-one column vector, expectation,
Euclidean norm, trace, the time-averaging operation and the
Frobenius norm of a matrix, respectively. diag(x) represents
the diagonal matrix with x in its main diagonal, and diag(X)
denotes the column vector whose elements are the diagonal
elements of X. Θa \ Θb denotes the difference set with the
elements of

{
x | x ∈ Θa and x /∈ Θb

}
.

2. THE SIGNAL MODEL

Considering an array of N sensors to receive P narrowband
signals, the received data can be modeled as

x(t) = a1s1(t) + v(t), (1)

where v(t) =
∑P
p=2 apsp(t) + n(t) represents the whole

interference-plus-noise (IPN) vector, t denotes the time in-
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dex, n(t) is the noise vector, sp(t) (p = 1, 2, · · · , P ) is the
complex waveform of the p-th signal source. a1 and ap (p =
2, 3, · · · , P ) stand for the true SVs of the SOI and the p-th in-
terference, respectively. The SO statistics of x(t) are defined
by

Rx = 〈E[x(t)x(t)H ]〉 = σ2
sa1a

H
1 + Qr,

Cx = 〈E[x(t)x(t)T ]〉 = γsσ
2
sa1a

T
1 + Qc,

(2)

where Qr = 〈E[v(t)v(t)H ]〉 and Qc = 〈E[v(t)v(t)T ]〉
are the IPN covariance matrix (IPNCM) and the conjugate
IPN covariance matrix (C-IPNCM) of x(t), respectively.
σ2
s = 〈E[|s1(t)|2]〉 and γs = 〈E[s1(t)2]〉/σ2

s = |γs|ejφs are
the power and noncircularity coefficient of the SOI, respec-
tively. When the SOI is the SO noncircular signal (|γs| 6= 0),
s∗1(t) can be decomposed as s∗1(t) = γ∗ss1(t) + [σ2

s(1 −
|γs|2)]1/2s′1(t) [4], where s′1(t) is an orthogonal component
of s1(t) with 〈E[s1(t)s′1(t)∗]〉 = 0 and 〈E[|s′1(t)|2]〉 = 1.
Then, the extended vector of x(t) can be expressed as

x̃(t) = [x(t)T ,x(t)H ]T = s1(t)aγ + vγ(t), (3)

where aγ = [aT1 , γ
∗
sa

H
1 ]T is the equivalent ESV of the SOI,

vγ(t) = [v(t)T ,v(t)H + h(t)T ]T is the global noise vector
of x̃(t), and h(t) = s′1(t)[σ2

s(1 − |γs|2)]1/2a∗1. According
to [7], the optimal WL MVDR beamformer is given by

wopt = [aHγ R−1
vγ aγ ]−1R−1

vγ aγ . (4)

where Rvγ = 〈E[vγ(t)vγ(t)H ]〉 denotes the A-IPNCM of
x(t).

3. THE PROPOSED ALGORITHM

3.1. The A-IPNCM Reconstruction

Let Θ stand for the SOI’s angular sector, which is assumed to
be distinguishable from the locations of the interferences [6,
12–14]. Then, the whole spatial domain Θall can be divided
into two parts, i.e., Θ and its complement sector Θ̄ with Θ ∩
Θ̄ = ∅ and Θ ∪ Θ̄ = Θall. Based on the Capon spatial
spectrum, the IPNCM can be reconstructed as [13, 15]

Q̃r =

∫
Θ̄

d(θ)dH(θ)

dH(θ)R̂−1
x d(θ)

dθ ≈
∑K

k=1

d(θk)dH(θk)

dH(θk)R̂−1
x d(θk)

,

(5)
where R̂x = (1/L)

∑L
t=1 x(t)xH(t) is the SCM of x(t), L

denotes the number of snapshots, θ1, θ2, · · · , θK are the sam-
pled angles in Θ̄, and d(θk) represents the array SV corre-
sponding to θk.

In this paper, the spatial spectrum of noncircular coeffi-
cient at direction θk is calculated as

γ(θk) = −dH(θk)Ed∗(θk)

dH(θk)Dd(θk)
, θk ∈ Θ̄, k = 1, · · · ,K (6)

where D = (R̂x − ĈxR̂
∗ −1
x Ĉ∗x)−1, E = −DĈxR̂

∗ −1
x ,

and Ĉx = (1/L)
∑L
t=1 x(t)xT (t) is the conjugate SCM

of x(t). The derivation of γ(θk) is obtained by maximiz-
ing the WL beamformer’s output spatial power P (θk) =

1/[aHγ (θk)R̂−1
x̃ aγ(θk)], where R̂x̃ = (1/L)

∑L
t=1 x̃(t)x̃H(t) =[

R̂x Ĉx

Ĉ∗x R̂∗x

]
is the augmented SCM of x(t), R̂−1

x̃ =
[
D E
E∗ D∗

]
,

and aγ(θk) = [dT (θk), γ∗(θk)dH(θk)]T . Then, the follow-
ing optimization problem is obtained

min
γ(θk)

I (γ(θk)) = dH(θk)Dd(θk) + γ(θk)dT (θk)E∗d(θk)+

γ∗(θk)dH(θk)Ed∗(θk) + |γ(θk)|2dT (θk)D∗d∗(θk).
(7)

Let the conjugate gradient of I (γ(θk)) be equal to 0, thus, we
get (6).

Subsequently, the C-IPNCM of x(t) can be reconstructed
as

Q̃c =
∑K

k=1

γ(θk)d(θk)dT (θk)

dH(θk)R̂−1
x d(θk)

=
∑K

k=1
γ(θk)ϕ(θk)

(8)
where ϕ(θk) = d(θk)dT (θk)

dH(θk)R̂−1
x d(θk)

. In Xu’s method [6], the spa-
tial spectrum of noncircular coefficient γ̃(θk) = γ(θk)·ζ(θk),
where ζ(θk) = dH(θk)d(θk)

dH(θk)(I−ηR̂−1
x )d(θk)

, and η denotes the min-

imum eigenvalue of R̂x̃. The difference between γ̃(θk)
and γ(θk) is only the positive real coefficient ζ(θk), i.e.,
phase [γ̃(θk)] = phase [γ(θk)] and |γ̃(θk)| = ζ(θk) · |γ(θk)|.
There are three reasons why we choose γ(θk) to recon-
struct the C-IPNCM. Firstly, the computational cost of
γ(θk) is lower than γ̃(θk) since we don’t need to cal-
culate the minimum eigenvalue of R̂x̃. Secondly, when
θk ∈ Θin

(
Θin denotes the angular set of the interfer-

ence’s directions
)
, ηdH(θk)R̂−1

x d(θk) ≈ 0 since the in-
terference’s power is always strong and η is a very small
positive value, thus ζ(θk) ≈ 1 ⇒ |γ(θk)| ≈ |γ̃(θk)|,
which means that (6) can accurately estimate the interfer-
ence’s noncircular rate. Thirdly, when θk ∈ Θ̄ \ Θin,
we have ζ(θk) > 1 due to 0 < ηdH(θk)R̂−1

x d(θk) <
N , then |γ(θk)| < |γ̃(θk)|. Moreover, the reconstructed
Q̃c can be rewritten as Q̃c = Q̃Θin

c + Q̃
Θ̄\Θin
c , where

Q̃Θin
c =

∑
θk∈Θin

|γ(θk)|j·phase[γ(θk)]ϕ(θk), and Q̃
Θ̄\Θin
c =∑

θk∈Θ̄\Θin |γ(θk)|j·phase[γ(θk)]ϕ(θk). Therefore, compared

with |γ̃(θk)|, |γ(θk)| can reduce the proportion of Q̃Θ̄\Θin
c in

Q̃c, which results in Q̃c closer to the theoretical C-IPNCM
Q̈c, where Q̈c =

∑P
p=2 γpσ

2
papa

T
p + σ2

nI, σ
2
p is the power of

the p-th interference, and σ2
n is the noise power.

The simulation results of Fig. 1 are added to verify
the above analyses. Three signal sources come from the
directions 3◦, 30◦, −40◦, with the noncircularity rate 0.9,
1, 0.8, and the noncircularity phase −60◦, 120◦, 80◦, re-
spectively. The first signal source is the desired signal with
SNR = 10 dB. The latter two are interferences and they
have the same interference-to-noise ratios (INRs). It is easy
to know that Θin = {30◦,−40◦}. The angular sampling
interval is 1◦, and we set Θ̄ = [−90◦,−4◦] ∪ [14◦, 90◦].
Fig. 1 (a) compares the estimated spatial spectra of non-
circularity rate between the proposed method (i.e. |γ(θk)|)
and the Xu’s method (i.e. |γ̃(θk)|). It can be observed that
both the proposed method and the Xu’s method can accu-
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Fig. 1. (a): Spatial spectrum of noncircularity rate, SNR =
10 dB, INR = 10 dB; (b): Coefficient of covariance matrix
versus input INR, SNR = 10 dB.

rately estimate the noncircularity rate at the directions of
interferences. When θk is close to the signal source’s di-
rection, |γ(θk)| and |γ̃(θk)| obtain almost the same value
since dH(θk)R̂−1

x d(θk) ≈ 0 ⇒ ζ(θk) ≈ 1, while at other
angles the values of |γ(θk)| are lower than |γ̃(θk)|. In ad-
dition, the reconstruction performance of the C-IPNCM
is evaluated by using the correlation coefficient between
the reconstructed Q̃c and the theoretical C-IPNCM Q̈c.
The correlation coefficient is defined as corr(Q̃c, Q̈c) =∣∣∣vec(Q̃c)

Hvec(Q̈c)
∣∣∣ /(∥∥∥vec(Q̃c)

∥∥∥∥∥∥vec(Q̈c)
∥∥∥) [16]. In

Fig. 1 (b), we compare the correlation coefficient of the
C-IPNCMs reconstructed by the proposed method and Xu’s
method to Q̈c at different input INRs. It can be seen that
when INR ≤ 12 dB, the correlation coefficients of the pro-
posed method are larger than the Xu’s method, which means
that the C-IPNCM reconstructed by the proposed method is
closer to the theoretical C-IPNCM.

Finally, the A-IPNCM of x(t) is reconstructed as

R̃vγ =

[
Q̃r Q̃c

Q̃∗c Q̃∗r

]
. (9)

3.2. The Desired Signal’s ESV Estimation

Firstly, the subspace U is constructed to preprocess the
received data, i.e., U = [u1,u2, · · · ,uP̃ ], where Q̃r =∑N
k=1 λkuku

H
k , λ1 ≥ λ2 ≥ · · · ≥ λN are the eigenvalues

of Q̃r, uk is the eigenvector associated with λk, and P̃ de-
notes the estimated number of the signal sources which can
be calculated by the method of minimum description length
(MDL) [17]. Generally speaking, the estimated value of P̃
has two situations since the interference signal sources are al-
ways strong, i.e., P̃ = P − 1 (at low SNR) or P̃ = P (at high
SNR). On the one hand, when P̃ = P − 1, U is equivalent to
the interference subspace. On the other hand, when P̃ = P ,
u1, · · · ,uP̃−1 constitute the interference subspace, and uP̃
corresponds to a noise vector with |uH

P̃
a1|2 ≈ 0. Moreover,

according to [5], if interferences are not located at the main
beam, we have |aHp a1|2 ≈ 0 (p = 2, 3, · · · , P ), which means
that the desired signal’s SV a1 is approximately orthogonal to
the interference subspace. Therefore, based on the analyses
above, whether the input SNR is high or not, a1 is approxi-

mately orthogonal to the subspace U, i.e., UHa1 ≈ 0. Thus,
(I − UUH)a1 = P⊥Ua1 ≈ a1, where P⊥U = I − UUH

stands for the orthogonal projection matrix of U. Secondly,
project x(t) onto P⊥U, we can extract the SOI’s component as

x̌(t) = P⊥Ux(t) ≈ a1s1(t) + ň(t), (10)

where ň(t) = P⊥Un(t). The extended vector of x̌(t) is de-
fined as

˜̌x(t) =
[
x̌T (t), x̌H(t)

]T ≈ aγs1(t) + v̌γ(t), (11)

where v̌γ(t) =
[
ňT (t), ňH(t) + hT (t)

]T
.

Next, we use the technique of shrinkage to estimate the
desired signal’s ESV. The cross correlation between ˜̌x(t) and
the WL beamformer’s output y(t) can be written as

f = E
[
˜̌x(t)y∗(t)

]
, (12)

where y(t) = wH ˜̌x(t), w is the WL weighting vector. s1(t),
s′1(t) and the noise are assumed to be independent from each
other, and they all have zero mean. Substituting (11) into (12),
f can be rewritten as

f = E
[
σ2
sa
H
γ waγ + v̌(t)v̌H(t)w

]
. (13)

As we know, |aHγ w| � |v̌H(t)w|, thus f is mainly deter-
mined by the first part. Then the more accurate estimate of f
is, the better estimate of aγ we will get.

Let us define B̂ = κ̂I, where κ̂ = Tr(Ĵ)/(2N), and Ĵ =
diag(˜̌xy∗). According to [18], a reasonable tradeoff between
bias increase and covariance reduction can be obtained by the
shrinkage of Ĵ to B̂. Meanwhile, we can apply it in a vector
shrinkage form

f̂ = ρ̂diag(B̂) + (1− ρ̂)diag(Ĵ), (14)

where ρ̂ is the shrinkage coefficient.
Let F̂ = diag(f̂), then our goal is to compute the op-

timal value of ρ̂ that minimizes the mean square error of

E

[∥∥∥F̂(i)− B̂(i− 1)
∥∥∥2

F

]
in the i-th snapshot. If we use the

RBLW estimator, then (15) and (16) are obtained as

f̂R(i) = ρ̂R(i)diag
[
B̂(i)

]
+ [1− ρ̂R(i)]diag

[
Ĵ(i)

]
, (15)

ρ̂R(i+ 1) = min


i−2
i Tr

[
Ĵ(i)Ĵ∗(i)

]
+ %(i)

(i+ 2)Tr
[
Ĵ(i)Ĵ∗(i)

]
− %(i)

2N

, 1

 , (16)

or (17) and (18) can be obtained by using the OAS estimator

f̂O(i) = ρ̂O(i)diag
[
B̂(i)

]
+ [1− ρ̂O(i)]diag

[
Ĵ(i)

]
, (17)

ρ̂O(i+ 1) =
(1− 1

N )Tr
[
F̂(i)Ĵ∗(i)

]
+ ς(i)

(i+ 1− 1
N )Tr

[
F̂(i)Ĵ∗(i)

]
+ (1− i

2N )ς(i)
, (18)

where Ĵ(i) = diag[ 1
i

i∑
t=1

˜̌x(t)y∗(t)], %(i) = Tr[Ĵ(i)]Tr[Ĵ∗(i)],
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Table 1. The steps of the the desired signal’s ESV estimation.
1. Initialize: w(0) = 1, ρ̂R(1) = ρ̂O(1) = 0.8

2. Repeat: For each snapshot index i = 1, 2, · · · :
2-a: y(t) = w(i− 1)H ˜̌x(t)

2-b: Ĵ(i) = diag
[
(1/i)

∑i
t=1

˜̌x(t)y∗(t)
]

2-c: κ̂(i) = Tr
[
Ĵ(i)

]
/(2N), B̂(i) = κ̂(i)I

2-d: calculate f̂R(i) and ρ̂R(i+ 1) according to (15) and

(16), respectively
(

or calculate f̂O(i) and ρ̂O(i+ 1)

according to (17) and (18), respectively
)

2-e: γ̂s(i) = f̂H2 (i)f̂∗1 (i)/[f̂T1 (i)f̂∗1 (i)]

2-f: ãγ(i) =
˜̂
f(i)

‖˜̂f(i)‖
, where ˜̂

f(i) = [f̂T1 (i), γ̂∗s (i)f̂H1 (i)]T

2-g: w(i) = R̃−1
vγ ãγ(i)/

[
ãHγ (i)R̃−1

vγ ãγ(i)
]

and ς(i) = Tr[F̂(i)]Tr[F̂∗(i)]. Moreover, if the initial value
ρ̂O(1) is between 0 and 1, the iterative process in (17) and
(18) is guaranteed to converge [18]. It is easy to know that
both aγ and f̂(i) can be divided into two parts

aγ =
[
aT1 ,a

T
2

]T
and f̂(i) =

[
f̂T1 (i), f̂T2 (i)

]T
(19)

where a2 = γ∗sa
∗
1, and ak ∈ CN×1, f̂k(i) ∈ CN×1 (k =

1, 2). Therefore, according to (13), if the estimated f̂(i) is
accurate enough, we have f̂2(i) = γ∗s f̂

∗
1 (i). However, this

situation will not happen due to the error of estimation, so
the estimated f̂(i) should be corrected. In order to correct the
f̂(i), we propose to minimize the following cost function

min
γs(i)

∥∥∥f̂2(i)− γ∗s (i)f̂∗1 (i)
∥∥∥2

. (20)

Then, γ̂s(i) = f̂H2 (i)f̂∗1 (i)/[f̂T1 (i)f̂∗1 (i)]. where γ̂s(i) de-
notes the estimation of γs. Finally, the desired signal’s

SV is estimated as ãγ(i) =
˜̂
f(i)/‖˜̂f(i)‖, where ˜̂

f(i) =[
f̂T1 (i), γ̂∗s (i)f̂H1 (i)

]T
. Throughout the above analysis, the

steps of the ESV estimation are summarized in Table 1. Fi-
nally, the proposed weighting vector is calculated as

wpro = R̃−1
vγ ãγ/

[
ãHγ R̃−1

vγ ãγ

]
. (21)

where R̃−1
vγ =

[
Dv Ev
E∗v D∗v

]
, Dv = (Q̃r − Q̃cQ̃

∗−1
r Q̃∗c)

−1,

and Ev = −DvQ̃cQ̃
∗−1
r .

Complexity analysis: the A-IPNCM reconstruction has
a complexity of O(KN2). For the ESV estimation, the
WL-OAS and the WL-RBLW share the same complexity of
O(LN2). Therefore, the overall complexities of our proposed
beamformers are equal to O

(
max{KN2, LN2}

)
. The Xu’s

method [6] and the Huang’s method [10] have the complex-
ities of O

(
max{KN2, (2N)3.5}

)
and O

(
(L+ 2N)3.5

)
,

respectively. The Zhang’s method [12] and the NC-RCB [11]
have the complexities of O

(
(2N)3.5

)
and O

(
(2N)3

)
, re-
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Fig. 2. (a): Output SINR versus input SNR; (b): Output SINR
versus number of snapshots, SNR = 10 dB.

spectively. Generally speaking, the computational cost of the
proposed algorithms are lower than [6, 10, 12].

4. SIMULATION RESULTS

In the simulations, a uniform linear array (ULA) with 10
omni-directional sensors spaced half-wavelength distance is
considered. The additive noise is modeled as complex circu-
larly symmetric Gaussian zero-mean spatially and temporally
white process. Three interferences come from the directions
30◦, 64◦, −45◦, with the noncircularity rate 1, 0.8, 0.9, and
the noncircularity phase −60◦, 120◦, 80◦, respectively. Their
interference-to-noise ratios (INRs) are equal to 20 dB. The
SOI is the UQPSK with |γs| = 0.9 and φs = 150◦, mean-
while, its presumed direction θ̄1 = 3◦. The angular region
of the desired signal is set to be Θ = [−3◦, 13◦], and then
Θ̄ = [−90◦,−3◦) ∪ (13◦, 90◦]. For the proposed methods,
the parameters ρ̂O(1) = ρ̂R(1) = 0.8 and w(0) = 1. The
angular sampling interval in the whole spatial domain is 1◦.
The WL-RBLW and the WL-OAS are compared with the
NC-RCB [11] with ε̃ = 3, the Xu’s method [6], the Huang’s
method [10] with εa = 0.25N = 2.5 and εγ = 0.1, and the
Zhang’s method [12] with ρ = 0.9. The number of snapshots
is 60. All the simulation figures are evaluated via 200 Monte
Carlo independent runs, and the input SNR is fixed at 10 dB
in Fig. 2 (b).

In Fig. 2, the random DOA mismatch of both the SOI and
the interferences are uniformly distributed in [−4◦, 4◦]. It can
be seen from Fig. 2 (a) that the WL-RBLW achieves the same
performance as the WL-OAS, when SNR ≤ −5 dB, all the
beamformers have similar performances, when SNR ≥ 0 dB,
the output signal-to-interference-plus-noise ratios (SINRs) of
the proposed beamformers are higher than the other competi-
tors. From Fig. 2 (b), we can observe that the proposed al-
gorithms outperform the other beamformers and can maintain
their good performances even at a small number of snapshots.

5. CONCLUSIONS

In this paper, two new robust WL beamforming algorithms
have been proposed for noncircular signals. Firstly, the A-
IPNCM is reconstructed by using the spatial spectrum of non-
circularity coefficient. Then, the RBLW estimator and the
OAS estimator are modified to estimate the desired signal’s
ESV. Simulation results verify the effectiveness of the pro-
posed beamformers.
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