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ABSTRACT

The number of elements of a uniform linear array (ULA) is the main
bottleneck in many applications in array processing in terms of cost
and power consumption. This motivates the use of sparse arrays
where some of the elements are removed. However, designing a
sparse array configuration with the smallest number of elements that
preserves the full array beam pattern is generally NP hard. In this pa-
per we adopt work in multiple-input-multiple-output (MIMO) radar
to study a sparse array composed of two sub apertures. We derive
the minimal number of elements required using this design, showing
that in general there are two optimal solutions. Next, we present an
extension of this approach beyond two sub apertures. By optimizing
the number of sub apertures, we prove that the optimal array config-
uration is related to the notion of prime factorization. This allows to
achieve a significant reduction in the number of elements.

Index Terms— Sparse arrays, beam pattern, beamforming,
polynomial factorization, sum coarray

1. INTRODUCTION

Uniform linear arrays (ULA) play an important role in diverse fields
such as radar, sonar, communications, direction-of-arrival (DOA),
radio astronomy, seismology and medical ultrasound [1]. The main
benefits of ULAs are simple geometry, high signal-to-noise ratio
(SNR), spatial selectivity and beamforming capabilities for elimi-
nation of interference signals. However, they suffer from high mu-
tual coupling, making the sensor responses interfere with each other
[2, 3]. More importantly they may become impractical due to the in-
crease in costs and power consumption when the number of elements
grows large. This motivates the use of sparse or thinned arrays ob-
tained by removing some of the elements [4, 5].

The number of elements, their weights, and element spacing in
the array generally determine the array beam pattern, characterized
by the peak side lobes height and main lobe width. One of the cen-
tral objectives of sparse array design is minimizing the number of
elements while maintaining a beam pattern identical to that of a fully
populated array [4, 6].

Finding an optimal sparse array geometry in terms of the fewest
elements is a combinatorial problem which is known to be NP hard
[7]. The authors in [8] formally introduced the aperture coarray as
a unifying concept applicable to both coherent and incoherent imag-
ing, showing that some of the elements can be removed while pre-
serving the beam pattern. Yet, no optimization for the minimal num-
ber of elements required given a number of effective aperture ele-
ments was presented. In [7] several approaches for designing sparse
arrays in multiple dimensions were reviewed. However, the minimal
number of elements required in each method was found numerically
and no closed-form solution was derived. Lockwood et al. [4] stated
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that the minimal number of elements needed is proportional to the
root of the number of effective aperture elements. They did not, how-
ever, consider the case where the number of elements in the effective
aperture is not a perfect square. Mitra et al. [5] based their design
of sparse arrays on polynomial factorization. The minimal number
of elements was found through an exhaustive combinatorial search
over all partitions. None of the works above considered a number of
sub apertures greater than two.

In this paper we adopt previous work in multiple-input-multiple-
output (MIMO) radar [9] to study a sparse array configuration com-
posed of two sub apertures which can be used in active sensing or
combined via multiplicative beamforming in passive settings [10].
This allows to reduce the number of elements while maintaining a
product beam pattern identical to that of a N element ULA. Us-
ing this approach, we derive a closed-form solution for the minimal
number of elements required in passive sensing to obtain an effec-
tive aperture with N elements, proving that in general there are two
optimal solutions. When N is a perfect square, the two solutions
coincide, leading to an expression for the minimal number of ele-
ments given by 2

√
N − 1. We broaden our work beyond two sub

apertures by presenting an extension of the sparse array configura-
tion to K > 2 sub apertures. We provide a closed-form solution for
the minimal number of elements needed where K is also optimized,
proving that the optimal solution with the fewest elements is given
by the prime factorization of N . This allows for a significant reduc-
tion in the number of elements, showing that when N is a perfect
power, the number of elements needed to form an effective beam
pattern of an N element ULA is on the order of log(N).

This paper is organized as follows. Section 2 describes the
model and a sparse array configuration based on the sum coarray. In
Section 3 we derive the minimal number of elements required using
two sub apertures with the proposed approach. We generalize the
results in Section 4 by optimizing the number of sub apertures.

2. MODEL AND ARRAY SYNTHESIS

The far-field beam pattern at an angle θ away from the broadside of
a ULA with N isotropic elements is given by [11]

B(θ) =

N−1∑
n=0

w(n) exp

(
2πj

d sin(θ)

λ
n

)
, (1)

where w(n) is the weight function at element position n, λ is the
wavelength and d is the inter-element spacing. In this work we con-
sider the case of unity weights, i.e. w(n) = 1, 0 ≤ n ≤ N − 1.
Thus, we have

B(θ) =

N−1∑
n=0

exp

(
2πj

d sin(θ)

λ
n

)
. (2)

A ULA with missing elements is termed a sparse array. Every
element missing corresponds to w(n) = 0 in (1). The problem ad-
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dressed in this paper is how to design a sparse arrays with the fewest
elements which has an effective beam pattern as that of a ULA with
N elements, given by (2).

Denoting x = e2πjd sin(θ)/λ, we can represent the beam pattern
as a polynomial

B(x) =

N−1∑
n=0

xn. (3)

Assuming N is not prime, the polynomial given by (3) can be de-
composed into a product of two lower order polynomials. This con-
cept of polynomial factorization stands in the center of the work by
Mitra et al. [5, 12, 6, 13, 14, 15] who designed sparse transmit and
receive arrays with a combined effective beam pattern that is equiv-
alent to that of a full array.

Given the decomposition N = N1N2 where N1 and N2 are
positive integers, it follows that (3) can be rewritten as

B(x) = B1(x)B2(x), (4)

where

B1(x) = 1 + x+ x2 + · · ·+ xN1−1,

B2(x) = 1 + xN1 + x2N1 + · · ·+ x(N2−1)N1 .

The polynomials B1(x) and B2(x) are used to construct two sub
arrays whose combined effective aperture is the convolution of the
sub array aperture functions [4]. This leads to a sparse array con-
figuration used in MIMO radar [5, 16, 9] where the spacing at the
transmitter is made N1 times that at the receiver. We can define this
sparse array as the composition of two sub apertures with element
locations given by the following sets

S1 = {nd, n = 0, 1, ..., N1 − 1}
S2 = {nN1d n = 0, 1, ..., N2 − 1}.

(5)

Define the sum coarray of a pair of apertures A1 and A2 as the
set [8]

CA1A2 = {m : m = n1 + n2, n1 ∈ A1 and n2 ∈ A2}. (6)

Then, the sum coarray of the sets defined in (5) is given by

CS1S2 = {nd, n = 0, 1, ..., N − 1}, (7)

i.e., the sum coarray is a ULA, allowing to obtain the desired beam
pattern, as seen in Figure 1.

1 2 3 4 5 6 7 8

(a)

(b)

(c)

0

(d)

d

d

3d

Fig. 1: Sparse Array Configuration for N = 9. (a) Full uniform
linear array. (b) Sub aperture S1 with N1 = 3. (c) Sub aperture S2

with N2 = 3. (d) Sum coarray of S1 and S2.

The sparse arrays (5) can be configured as two separate arrays
(as in MIMO radar) or as part of a single array for passive settings us-
ing multiplicative beamforming [10]. Namely, the data is first beam-
formed from each sub array separately and then multiplied. The

arrays (5) are similar to nested arrays proposed by Vaidyanathan and
Pal [16]. However, they are synthesized from the sum coarray per-
spective which arises naturally in multiplicative beamforming while
nested arrays are related to difference coarray that occurs in prob-
lems involving the autocorrelation of the received signal. In addition,
they require a smaller physical aperture.

Using the proposed sparse array geometry, our goal is first to find
the minimal number of elements required for recovering the beam
pattern by optimizing N1 and N2. Then, we extend this approach to
the case where the number of sub apertures is greater than two. Thus,
we aim to achieve a further reduction in the number of elements by
finding the optimal number of sub apertures and the element loca-
tions forming each one of them.

3. DUAL SUB APERTURES

Given an arbitrary positive integer N > 1, we seek integers N1 and
N2 which minimize the total number of elements while effectively
obtaining the beam pattern of a ULA with N elements. While Mitra
et al. [5] found the optimal solution by an exhaustive combinatorial
search over all partitions, we provide below a closed-form expres-
sion.

Our problem can be cast as the following optimization problem:

min
N1,N2∈N+

N1 +N2 − 1

subject to N1N2 = N.
(8)

When N is a prime number there are only two feasible solutions,
N1 = 1 and N2 = N and vice versa. Both solutions are optimal
and lead to the full array configuration. A closed form solution for
the case when N is not prime is given by the following theorem.

Theorem 1. Given a full ULA with N elements, let D1 and D2 be
the sets defined as follows

D1 =
{
n|N : n ≤

√
N
}
, D2 =

{
n|N : n ≥

√
N
}
,

where n|N denotes a divisor ofN . Then, the optimum values forN1

and N2 are given by

N1 = max(D1), N2 = min(D2),

N1 = min(D2), N2 = max(D1).
(9)

Proof. From the constraint in (8), N2 = N
N1

. Assuming without
loss of generality that N1 ≤ N2, we have

N1 = argmin
D1

d+
N

d
, (10)

where we neglect the constant term −1.
Define the function f : [1,

√
N ] → R+ over a continuous do-

main
f(x) = x+

N

x
.

The function f(x) is continuous and differentiable over the open
interval (1,

√
N). Its derivative is given by

df

dx
= 1− N

x2
< 0,

hence, f(x) is monotonically decreasing. Since D1 ⊂ [1,
√
N ],

denoting N1 = max(D1), we have

f(N1) < f(d), d ∈ D1.
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Therefore, the optimal solution is given by N1 = max(D1) and
N2 = N

N1
= min(D2) accordingly. By interchanging the roles

of N1 and N2 we get the solution for N1 ≥ N2, given by N1 =
min(D2) and N2 = max(D1).

Theorem 1 states that in the general case there are two optimal
solutions (see Fig. 2). Note, however, that although both choices of-
fer the same minimal number of elements, the solution where N1 ≤
N2 might be preferable since it exhibits reduced mutual coupling
compared to the second option. When

√
N is an integer max(D1) =

min(D2) =
√
N , leading to the following corollary:

Corollary 1. Assuming
√
N ∈ N+, problem (8) has a unique solu-

tion. The optimum values for N1 and N2 are given by

N1 = N2 =
√
N. (11)

Corollary 1 implies that the beam pattern of anN element ULA,
where N is a perfect square, can be realized using only 2

√
N − 1

elements. For example, as shown in Fig. 3, a beam pattern of a 16
element ULA can be achieved using only 7 elements.

Fig. 2: Optimal Solutions for N = 18. (a) Beam pattern of a
full ULA. (b) Beam pattern of a sub aperture with N1 = 3. (c)
Beam pattern of a sub aperture with N2 = 6. (d) Beam pattern of a
combined aperture with N1 = 3, N2 = 6. (e) Beam pattern of a sub
aperture withN1 = 6. (f) Beam pattern of a sub aperture withN2 =
3. (g) Beam pattern of a combined aperture with N1 = 6, N2 = 3.

4. MULTIPLE SUB APERTURES

So far, we considered using only two sub apertures for a combined
effective full array. However, as shown in [5], in many cases the
polynomial B(x) can be decomposed to a product of K lower order
polynomials where K > 2. This allows to obtain a desired beam
pattern with a further reduction in the number of elements required,
as we show next.

Assume N can be written as a product

N =
K∏
i=1

Ni, (12)

where {Ni}Ki=1 are positive integers greater than 1. Then, the sparse

Fig. 3: Optimal Solution for N = 16. (a) Beam pattern of a full
ULA. (b) beam pattern of a sub aperture withN1 = 4. (c) beam pat-
tern of a sub aperture with N2 = 4 (d) beam pattern of a combined
aperture with N1 = 4, N2 = 4.

array configuration can be extended to K:

S1 = {nd, n = 0, ..., N1 − 1}

Si = {nd
i−1∏
j=1

Nj n = 0, ..., Ni − 1, i = 2, ..,K}.
(13)

Broadening the definition of the sum coarray to multiple apertures

CA1,..,AK = {m : m =

K∑
i=1

ni, ni ∈ Ai}, (14)

we have that CS1,..,SK is a filled ULA withN elements, allowing to
attain a beam pattern of a full array. Note that here we deal with pas-
sive sensing where we use a single array, defined as the union of the
sub arrays given by (13), for receiving only instead of active sensing
as done in MIMO radar. After reception, multiplicative beamform-
ing is applied to obtain an effective ULA.

To find the minimal number of elements needed using this ap-
proach, we define a generalized version of problem (8):

min
K∈N+

min
N1,...,NK∈N+

N1,...,NK≥2

K∑
i=1

Ni − (K − 1)

subject to
K∏
i=1

Ni = N.

(15)

The solution to (15) is given by the following theorem.

Theorem 2. Let N be the number of elements in a full ULA, repre-
sented by its prime factorization

N =

ω∏
i=1

pqii ,

where ω is the number of distinct prime factors of N . Define Ω =∑ω
i=1 qi. The optimal number of sub apertures K and the number

of elements in each sub aperture are given by

K = Ω,
{
Ni
}Ω

i=1
=
{
p1, ..., p1︸ ︷︷ ︸
q1times

, ..., pω, ..., pω︸ ︷︷ ︸
qω times

}
.
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Proof. Suppose to the contrary that the optimal solution satisfies
K 6= Ω. The fundamental theorem of arithmetic states that ev-
ery positive integer has a unique prime factorization [17], hence,
K ≤ Ω. Assume K < Ω. Then there exists Ni which is not prime
and Ni can be decomposed into the product of two smaller integers
Ni1 and Ni2 where Ni1, Ni2 ≥ 2. This amounts to bisecting the ith
aperture into 2 to yield K + 1 sub apertures. Assuming Ni1 ≤ Ni2
without loss of generality, we have that

Ni1 +Ni2 ≤ 2Ni2 ≤ Ni1Ni2. (16)

Hence, breaking up the ith aperture into two levels decreases the
value of the objective function at least by 1, in contradiction to the
optimality of the solution.

Following the latter, we can go on splitting the sub apertures
until all Ni are irreducible, i.e., prime numbers. This, along with
the fact that the prime factorization is unique, implies that the total
number of sub apertures is K = Ω and the optimal {Ni}Ωi=1 are the
prime factors of N .

Theorem 2 implies that a significant reduction in the number of
elements can be obtained, leading to a minimal number of elements
given by

∑ω
i=1 piqi − Ω + 1. When N = 2M , the optimal solu-

tion is to useM sub apertures, each with two elements where all sub
apertures share the same first element, leading to a total number of
M + 1 elements. This means that the minimal number of elements
is on the order of log(N) (See Fig. 4). Notice that whenN = N1N2

and N1, N2 < N are two different prime numbers, the optimal so-
lution is to use K = 2 sub apertures, reducing to the case discussed
in Section 3.

Fig. 4: Optimal Solution for N = 16 with Multiple Apertures.
(a) Beam pattern of a full ULA. (b) Beam pattern of a sub aperture
with N1 = 2. (c) Beam pattern of a sub aperture with N2 = 2.
(d) Beam pattern of a sub aperture with N3 = 2. (e) Beam pattern
of a sub aperture with N4 = 2. (f) Beam pattern of the combined
aperture of 4 sub apertures.

5. CONCLUSION

In this paper, we outlined a sparse array configuration, based on the
sum coarray, which achieves the same beam pattern as a full array
when used with active or passive sensing. Using this approach, we
derived the minimal number of elements needed in passive mode,
showing that only 2

√
N − 1 elements can be used to attain a beam

pattern of an effective aperture with N elements. We then proposed
an extension of this design beyond two sub apertures and proved that
the minimal number of elements in passive settings is given by the
prime factorization of N . Thus, the number of elements required is
on the order of log(N) when N is a perfect power. This demon-
strates that a significant reduction in the number of elements can be
achieved compared to previous approaches.
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