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ABSTRACT

Array spatial thinning is employed to select the most ef-
fective antenna elements in a large phased array for optimum
performance concerning hardware and computational costs,
in conjunction with managing element failure and radio inter-
ference mitigation. We formulate spatial array thinning un-
der connectivity constraints to make the thinning applicable
in large arrays. By introducing graph optimization, the prob-
lem is recast as a k-clique version of a generalized minimum
clique problem. Furthermore, by studying optimum cluster-
ing for the proposed formulation, we show by an example that
the unconstrained thinning performance is achievable, even
with connectivity constraints.

Index Terms— Array thinning, antenna selection, beam-
forming, semidefinite programming, convex optimization,
graph optimization, generalized minimum clique problem.

1. INTRODUCTION

Many applications such as communications, radar systems,
radio telescopes, and automotive sensing stand to benefit from
large phased arrays [1–4]. With the increasing the size of
phased arrays, the role of antenna selection and array thinning
is becoming more important [5,6]. Antenna selection aims to
thin a large array, taking advantage of the redundancy inher-
ent to it in order to reduce hardware cost, alleviate heating
problems [7], decrease dimensionality of post processing,
and mitigate radio interference [8, 9]. Furthermore, a thinned
array can be viewed as a full array with some non-operating
antenna elements due to failure of the electronic front-ends.

Several methods e.g statistical spatial tapering [10], regu-
lar grid-based thinning [11], iterative Fourier technique [12],
soft-thresholding-based optimization, and convex optimiza-
tion [8,13] have been proposed to reduce the number of active
elements while maintaining performance in a phased array.
Achieving full array reconfigurability, where any subset of an-
tennas may be selected, requires that every front-end be con-
nected via switches to every antenna in the array. Although
this permits the selection algorithm to choose the best subar-
ray for any scenario, the complexity of connectivity, routing,
and RF multiplexing makes this approach impractical.

In this paper, we propose employing constraints on the ac-
cessible antenna elements for each front-end during the array
thinning process to simplify the connections, and routing and
RF circuitry, and solve the array thinning problem using graph
optimization. To this end, we revisit antenna selection in the
case of single interference cancellation defining it as a mini-
mum k-clique problem in graph optimization [14]. We then
propose a k-clique version of a generalized minimum clique
(GMCP) problem to address connectivity constraints [15].

The connectivity constraints are formulated as a given set
of clusters of antenna elements. After relaxing and lifting
the problem by a semidefinite method and finding the lower
bound for this formulation, we proceed to obtain the optimum
clusters. To solve this problem, we cast it as a M -densest
subgraph. Two different density matrices including inverse
Euclidean with a Gaussian core and the signal of interest-
interference correlation is used to divide the full array into
M clusters. We show through simulations that the proposed
optimum clustering technique performs very close to uncon-
strained antenna selection despite the added connectivity con-
straints. Furthermore, in addition to the dimensionality re-
duction provided by antenna selection, thinning under con-
nectivity constraints is more computationally efficient in the
optimization phase as it operates over a smaller subspace of
possible solutions.

2. PROBLEM FORMULATION

The signal-to-interference-plus noise ration (SINR) at the out-
put of the optimum beamformer for a phased array containing
N elements is given by [8]

SINRout = PsvHs R−1n vs
≈ NSNR

(
1− |αjs|2

)
, (1)

where SNR is the signal-to-noise ratio. Ps and vs are the
power and steering vector of the signal of interest, and |αjs|2
is the spatial separability between the signal of interest and
interference measured by the spatial correlation coefficient
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(SCC)

αjs =
vHj vs
‖vj‖ ‖vs‖

=
vHj vs√

vHj vj
√

vHs vs
=

vHj vs
N2

, (2)

where vj is the steering vector of the interference.
It can be seen from (1) that a smaller correlation between

the signal and interference (that is smaller |αjs|2) translates
to a higher the SINR at the output. Thus, through antenna se-
lection we cast the problem as the combinatorial optimization

min
c

f(c)

s.t. ci(ci − 1) = 0 i = 1...N

and cT c = k, (3)

where f(c) is the weighted norm of the selection vector c

f(c) = |αjs|2 =
‖c‖2Wr

k2
=

cTWrc
k2

. (4)

Wr is a N ×N matrix comprising the real part of the corre-
lation coefficients of different antenan elements

Wr = real(vjsvHjs), (5)

where

vjs = vs � v∗j . (6)

Thus, (3) seeks the k least correlated elements of the correla-
tion vector vjs. It is worth noting that this formulation can be
extended to multiple interference scenarios [16, 17].

The optimization problem (3) is a non-convex quadrature
programming with quadratic constraints. Due to the binary
constraints, it is intractable and no exact solution is available.
Nevertheless, the solution can be approximated via heuris-
tic methods e.g. correlation measurements, difference of two
convex sets (DCS), and randomized semidefinite program-
ming [8, 13]. In this work, we approach antenna selection
from a different perspective. Noting that Wr is a similarity
matrix, the array can be modelled as a weighted complete
graph. The optimization (3) is then recast as finding a k-clique
of minimum weight sum [18] as shown in Fig. 1(a).

In addition to reducing the problem dimensionality, an-
tenna selection can be employed to reconfigure the array to
manage the failure of a RF front-end. For a large array, the
necessary connections among the RF front-ends and antenna
elements can grow rapidly. Managing RF front end failure
for k front-ends and N elements requires a fully connected
array, or C = kN connections. On the other hand, to ensure
there is at least one RF path for every element, the number of
necessary connections is

C = kN −
k−1∑
l=1

l. (7)

(a) (b)

Fig. 1. (a): k-clique problem (b): k-clique GMCP.

To satisfy the connectivity criteria, connectivity constraints
are added to optimization in (3) to limit the number of an-
tenna elements that each front-end is permitted to serve. In
this case, the clique problem mentioned earlier becomes a k-
clique version of the generalized minimum clique problem.
The complete graph is divided into some clusters and a k-
clique GMCP is devised to find a clique containing exactly k
vertices from each cluster such that the cost of the induced
subgraph is minimized (Fig. 1(b)). Let G = (V,E,Wr)
where V is the set of vertices and E the edges be a similar-
ity graph representing the full array observing the correlation
steering vector vsj for a specific scenario. We assume that
there are M clusters defined by {v1, ..., vM} as the character-
istic vectors of disjoint subsets of V. Letting c be the char-
acteristic vector of the final k-clique, the GMCP for antenna
selection under the connectivity constraints is

min
c

1

k2
cTWrc

s.t. ci(ci − 1) = 0 i = 1...N,

cTVic = ki i = 1...M, (8)

where Vi = diag(vi) and ki is the number of vertices in clus-
ter i.

The optimization problem (8) is one of quadratic pro-
graming with convex quadratic and binary constraints. It
can be relaxed by semidefinite programming and the solution
can be approximated via constrained randomized sampling
as proposed in [13]. By introducing a new matrix variable
C ∈ RN×N , the semidefinite relaxed (SDR) version of (8) is:

min
C, c

1

k2
Tr(CWr)

s.t. diag(C) = c
Tr(CVi) = ki i = 1...M,[

C c
cT 1

]
� 0. (9)

The optimum solutions (C∗, c∗) provided by (9) consitute a
lower bound for the primal problem in (8) [19]. Note the for-
mulation presented here implies the precise of the directions
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of arrival (DOA) of the signal and interfernce. Although be-
yond the scope of this work, the problem may be reformulated
to account for the uncertainty in DOA estimation.

3. OPTIMUM ARRAY ELEMENT CLUSTERING

Given the partitioning into M clusters, the previous section
sought to determine the opimum antenna selection. In what
follows, we aim to determine the optimum clustering con-
figuration itself for a particular number of cluster M . This,
then, would allow the antenna selection for optimal interfer-
ence cancellation to be determined as per section 2.

Considering the full array as an undirected weighted
graph G = (V,E,W), various weights can be adopted for
clustering depending on the purpose. For instance, if min-
imum routing length (e.g. for minimum delay) is required,
then clusters with geometrically-closed members are needed.
In this case, the Euclidean distance can be employed as the
cost function. If, on the other hand, the goal is to manage
front-end failure, then clusters with geometrically-distant
members are more effective as electronic failures are more
likely to occur in adjacent front-ends.

An induced subgraph of G whose set of vertices consists
of k disjoint cliques is called a k-disjoint-clique (KDC) sub-
graph. Finding a KDC subgraph is a graph clustering prob-
lem [20] (we use M instead of k for notation consistency).
To divide G into M clusters, we need to find the M -densest
region in terms of W. For M disjoint cliques in a graph, the
normalized partition matrix is formed as,

X =

(
v1
‖v1‖

,
v2
‖v2‖

, ...,
vM
‖vM‖

)
.

The total density of the clusters induced byPM = {v1, ..., vM}
is then calculated as

D(PM ) ,
M∑
i=1

vTi Wvi
vTi vi

= Tr(XTWX). (10)

Hence, the problem becomes finding PM that maximizes the
total density. This problem is expressed as

max
PM

D(PM )

s.t. [Xi]j ∈ {0,
1

‖vj‖
}N , j = 1, ...,M

rank(X) =M,

X1M = 1N ,

XT 1N = 1M . (11)

Taking the advantage of orthogonality of the characteristic
vectors, we introducing the new matrix variable

Y =

M∑
i=1

vivTi
vTi vi

. (12)

(a) (b) (c)

Fig. 2. (a): Clustering by maximizing the inverse Euclidean
distance. (b): Clustering by minimizing the inverse Euclidean
distance. (c): Clustering by maximizing Wr,T .

After lifting and rank constraint relaxation, the SDR version
of (9) is formulated as [21]

max
Y

Tr(YW)

s.t. Ye ≤ e,
Tr(Y) =M,

Y ≥ 0,

Y � 0. (13)

The solution Y∗ given by (13) can then be used to recover
the KDC subgraph. To this end, a rank reduction scheme fol-
lowed by an optimum rounding is required.

3.1. Choosing the weight matrix

Assuming that the criteria for cluster enabling are satisfied,
we can find the optimum clusters for the particular weight
matrix. As mentioned earlier, the cost function is chosen de-
pending on the aim of the clustering. For instance, the ac-
tual physical distance of the elements can be used to ensure
shorter and less complicated routing. To illustrate this, con-
sider a 4 × 4 rectangular array with uniform half wavelength
inter-element spacing. Also define the similarity measure as

Wi,j = e−‖pi−pj‖
2

. (14)

Here pi and pj denote the actual positions of elements i and j.
Thus, elements that are physically close are considered more
similar. Figs. 2(a) and 2(b) show the results of clustering the
array into M = 4 clusters using (13) and (14) respectively.
Notice that, as expected, the first strategy leads to contiguous
clusters, whereas the second one gives the maximal spread.

Another useful weight matrix is composed of the correla-
tion coefficients corresponding to different correlation steer-
ing vectors vjs. In this way, antenna elements that are most
correlated with each other are spread across different clusters.
This guarantees that the loss of a front-end imposes the small-
est loss when the the selection is implemeneted using (9). To
demonstrate, assume we have a set of l scenarios of interst
where each scenario specifies a combination of signal of in-
terest and interference DOAs. The corresponding correlation
matrices are denoted Wr,i, i = 1, ..., l. Now we define the
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optimum clustering as that which maximizes the total density
over the entire set of sample points. That is

max
Y

Tr(YWr,T ),

Wr,T =

L∑
i=1

Wr,i. (15)

The effectiveness of this clustering scheme will be studied in
the next section.

4. SIMULATION

In this section, we present simulation examples to illustrate
the performance of the antenna selection under connectiv-
ity constraints and optimum clustering. We employ a uni-
formly spaced rectangular array comprising 4 × 4 antennas.
The elevation and azimuth of the signal of interest are fixed
at φs = 0.15π, θs = 0.25π. The azimuth of the interfer-
ence, φj , varies from 0 to π

2 , whereas the elevation is fixed
at θj = 0.4π. In the first scenario we consider three cases
involving the selection of k = 4, 8, and 12 antennas from to-
tal 16 elements, arranged in M = 4 clusters each consist-
ing of kM = 1, 2 and 3 elements respectively. The clus-
tering is implemented according to the strategies shown in
Figs. 2(a), 2(b), 2(c), which are denoted as configurations 1,
2 and 3 respectively. The correlation matrix Wr,i is sampled
over φ = 0, ..., π with steps of π

180 . For each case, two dif-
ferent mean-square-errors (MSE) are calculated. The first is
the MSE between the optimum value obtained by exhaustive
search and the SDR lower bound proposed in (8). The second
is the MSE between the minimum achievable values of the
SCC squared for the clustered and unconstrained arrays. The
SDR lower bound is obtained using CVX [22]. The results
are displayed in Fig. 3. The bottom curves give the distance
of each solution from its respective lower bound (determined
using an exhaustive search). It is clear that the SDR lower
bounds are tight. The top curves, which exhibit the MSE of
each configuration with respect to the unconstrained solution,
show that Conf. 3 (that is the clustering based on maximizing
Wr,T is closest the unconstrained selection. This is due to the
fact that, in the general case, where no other criteria such as
minmal routing are provided, (15) allows the maximal amount
of information to be retained by the clustering.

In the second example, the DOAs are fixed and the per-
formance comparison is done in terms of output SINR for
different cluster cardinalities. Although all configurations are
capable of providing acceptable SINRs compared to the full
array, the clustering based on (15) outperforms the other two
for all considered cardinality values. Therefore, by adopting
connectivity constraints and optimum clustering we are able
to achieve the unconstrained selection with a much smaller
number of connections. For instance, to select k = 12 el-
ements, C = 192 required connections in an unconstrained
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Fig. 3. Top: MSE between clustered selection and uncon-
strained selection. Bottom: MSE between the optimum value
obtained by exhaustive search and SDR.
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Fig. 4. The maximum achievable output SINR correspond-
ing to different cluster cardinalities for unconstrained spatial
thinning and spatial thinning under different connectivity con-
straints.

selection is decreased to C = 48 connections by dividing the
array into M = 4 clusters. Moreover, the solution space for
the unconstrained selection which is

(
16
12

)
= 1820, is reduced

to
(
4
3

)4
= 256.

5. CONCLUSION

In this paper, we studied spatial array thinning for interference
cancellation under connectivity constraints. We formualted
the problem was a generalized clique problem in graph op-
timization and use semidefinite relaxation to solve it. We
proposed appropriate connectivity contraints for different cri-
teria and evalutated their performance using simulations. We
demonstrated that the relaxed solutions attain their respective
lower bounds. Furhtermore, we showed that the uncon-
strained thinning performance was achieved by optimum
clustering scheme resulting in smaller number of required
connections and lower computational complexity.
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