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ABSTRACT

In this paper, we present a sparsity-based space-time adaptive
processing (STAP) algorithm with coprime array and coprime
pulse repetition interval (PRI). The considered space-time co-
prime configuration can significantly save the cost. However,
the direct STAP does not exploit the advantage of the large
aperture brought by coprime configuration and the recently
developed spatial-temporal smoothed-based STAP requires a
large number of training snapshots. To solve these issues,
we propose a sparsity-based STAP algorithm by using the
spacial-temporal sparsity of clutter in virtual domain. Sim-
ulation results show that the proposed algorithm can obtain
a much higher output signal-to-interference-plus-noise ratio
and improve the convergence speed.

Index Terms— Sparsity-based space-time adaptive pro-
cessing (STAP), clutter suppression, coprime array, coprime
pulse repetition interval

1. INTRODUCTION

The restless search for low cost radar with relatively high
performance is always considered in research and practical
application areas. Compared with the uniform linear array
(ULA), coprime arrays have attracted tremendous attention
by its ability which can provide a larger array aperture and
achieve O(MN) degrees of freedom (DoFs) by using only
M+N−1 physical sensors (M andN are coprime integers).
Indeed, coprime arrays provide an effective method for reduc-
ing the radar cost requirements. Exploiting these advantages,
the directional-of-arrival (DOA) estimation achieves signifi-
cant enhancement in the number of sources detected and ac-
curacy of DOA estimation [1, 2]. Moreover, researchers ap-
plied the idea of the coprime sampling to the area of the space-
time adaptive processing (STAP) [3–7].

There are two types of coprime sampling structure in
STAP processor, one is the space-fast-time coprime sampler,
and the other is the space-slow-time coprime sampler. For
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the former one, the joint angle-Doppler estimation can obtain
a much higher resolution [3]. For the latter one, the airborne
radar transmits a coherent pulse sequence with coprime pulse
repetition intervals (PRIs) and receives returns by using a
ULA. It was shown that a much higher SINR performance
is achieved than the uniform transmitting configuration with
the same number of pulses, but it only considers the case
of the ULA [4]. A STAP algorithm for the nested array (a
special case of coprime array) was proposed for clutter sup-
pression, where deep nulls along clutter ridge and a narrow
mainlobe in the desired direction were achieved [5]. How-
ever, the directions and Dopplers of all jamming and clutter
sources are required to be prior known. In addition, the mini-
mum redundancy STAP was proposed by arranging the joint
space-slow-time samplers to achieve larger DoFs with the
minimum redundancy sampler, and the space-time resolution
and slow moving target detection performance were greatly
increased [6]. However, the constructing procedure is com-
plex for the case of large arrays. Compared with minimum
redundancy sampler design, the coprime sampler design is
very simpler. [7] developed a spacial-temporal smoothed-
based STAP with space-slow-time samplers and showed a
much higher signal-to-interference-plus-noise ratio (SINR)
compared with direct STAP. However, since the errors are
incorporated by the virtual covariance matrix estimation, this
kind of approaches require a much larger number of snapshot-
s for training. In this paper, we focus on the space-slow-time
sampler and try to develop STAP algorithms to reduce the
number of space-time snapshots.

Motivated by the sparsity-based STAP with significant
performance improvement in a very small number of s-
napshots [8–10], we propose a novel sparsity-based STAP
algorithm by considering coprime arrays and coprime PRI.
Specifically, the proposed algorithm can be divided into three
steps: (i) introduce the virtual space-time snapshot con-
struction; (ii) formulate the sparse signal model for virtual
space-time snapshot and apply the least absolute shrinkage
and selection operator (LASSO) [11] method to obtain the
clutter spectrum estimate; (iii) design a STAP filter with the
clutter spectrum estimate. Furthermore, we analyze error of
the virtual space-time snapshot constructed by using finite
snapshots. Simulation results are presented to demonstrate
the effectiveness of the proposed algorithm.
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Fig. 1. Coprime array and coprime PRI configuration.

2. SPACE-SLOW-TIME COPRIME SAMPLING
MODEL

Consider a pulse-Doppler side-looking airborne radar with an
N -sensors coprime array, which is a interleaving of two U-
LAs: one ULA has 2N1 sensors with intersensor spacingN1d
and the other ULA has N2 sensors with intersensor spacing
N2d, as shown in Fig.1(a). Therefore, the sensor locations
are {ni1d, i1 = 1, · · · , N − 1} with N = 2N1 +N2− 1 (N1

and N2 being coprime integers satisfying N1 < N2). The
radar transmits M = 2M1 + M2 − 1 coherent pulses in a
coherent processing interval (CPI) with the coprime PRI set
{mi2Tr, i2 = 1, · · · ,M−1}, as shown in Fig.1(b). HereM1

and M2 are also coprime integers satisfying M1 < M2, and
Tr is the minimal PRI. The transmitter carrier frequency is fc.
Ignoring the impact of range ambiguities, the received signal
in the target-free range bins can be formulated as

x = xc + u, (1)

where u denotes the thermal noise, and xc denotes anMN×1
clutter space-time snapshot with the form

xc =

Nc∑
i=1

αi,cv(ωi,c, φi,c) = Vαc. (2)

Here, αi,c is the unknown complex amplitude of the ith clut-
ter patch, Nc is the number of statistically independent clutter
patches in each iso-range, V = [v(φ1,c, ω1,c), · · · ,v(φNc,c, ωNc,c)]
denotes the clutter space-time steering matrix, and v(ωi,c, φi,c) =
b(ωi,c)⊗a(φi,c) is theMN×1 space-time steering vector at
the normalized Doppler frequency ωi,c and spatial frequency
φi,c. Here, b(ωi,c) and a(φi,c) are the temporal and spatial
steering vectors, given by

b(fd,i) = [1, · · · , exp(j2πmM−1ωi,c)]
T , (3)

a(fs,i) = [1, · · · , exp(j2πnN−1φi,c)]
T , (4)

where the superscript T denotes the transpose.
Then, by assuming mutual independence of noise compo-

nents, the corresponding covariance matrix of received signal
x is calculated by

R = E[xxH ]

=

Nc∑
i=1

σ2
i,cv(φi,c, ωi,c)v

H(φi,c, ωi,c) + σ2
uI,

(5)

where σ2
i,c = E[|αi,c|2], σ2

u is the variance of the noise vector
u, I is the identity matrix, E[·] denotes the expected value,
and the superscript H stands for transpose-conjugate of ma-
trices. Since R is unknown in practice, the secondary data is
employed to estimate the interference (clutter-plus-noise) co-
variance matrix. Assume these secondary data is noted as xk,
where k = 1, 2, · · · ,K. The covariance matrix is calculated
by

R̂ =
1

K

K∑
k=1

xkxk
H , (6)

where K is the number of the secondary data, and R̂ is the
estimate of R.

3. PROPOSED SPARSITY-BASED STAP
ALGORITHM

In this section, we first detail the process of virtual space-time
snapshot construction, then design the propose sparsity-based
STAP filter, and finally analyze the errors of virtual construc-
tion by using finite snapshots.

3.1. Virtual Space-Time Snapshot Construction

By using the property of Kronecker product (A ⊗ B)(C ⊗
D) = (AC)⊗(BD), we express the term v(φi,c, ωi,c)v(φi,c, ωi,c)

H

in (5) as(
b(ωi,c)b(ωi,c)

H
)
⊗
(
a(φi,c)a(φi,c)

H
)
. (7)

Note that the entries in b(ωi,c)b(ωi,c)
H are taken the form

of ej2πωi,cm̆, where the set m̆ contains unique integers of
(3M1M2 + M1 −M2) [3], [12]. Hence, there exists an ar-
rangement that converts b(ωi,c)b(ωi,c)

H to a new steering
vector b̆(ωi,c) = [ej2πωi,cm̆1 , · · · , ej2πωi,cm̆(3M1+M1−M2) ].
So, the b̆(ωi,c) can be regarded as steering vector corre-
sponding to (3M1M2 + M1 −M2)-pulses in one CPI. The
same argument holds true in the spatial domain, where a
new steering vector ă(φi,c) is viewed as the steering vector
corresponding to 3N1N2 + N1 − N1 sensors. According
to the equivalence of space-time snapshot and a slice matrix
for a give range bin, the virtual space-time snapshot Z is
constructed from R by

Z =

Nc∑
i

σ2
i,că(φi,c)b̆(ωi,c)

T + σ2
ue1e

T
2 , (8)

Vectorizing the virtual space-time snapshot Z, we get

z = vec(Z) = V̆p + σ2
ue
′
u, (9)

where V̆ = [b̆(ω1,c)⊗ă(φ1,c), · · · , b̆(ωNc,c)⊗ă(φNc,c)] de-
notes the clutter space-time steering matrix, p = [σ2

1,c, · · · ,
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σ2
Nc,c

]T , and e′u is a column vector of all zeros except for a
one at the central position. Comparing (9) with (1), we can
note that z behaves like an equivalent received signal from
a virtual array with much longer array aperture whose cor-
responding steering matrix is defined by V̆. The equivalent
source signal vector is represented by p and the noise be-
comes a deterministic vector given by σ2

ue
′
u.

Since the virtual space-time snapshot becomes a single
snapshot of p, the rank of z is one. As such, the spatial-
temporal smoothed-based method is developed to obtain a
positive estimate of the interference covariance matrix but
sacrificing some DoFs of the virtual snapshots [6], [7]. In
the following, we propose a sparsity-based STAP without any
reducing of the DoFs.

3.2. Sparsity-based STAP Filter Design

If we discrete the whole angle-Doppler plane intoNd = ρdM
and Ns = ρsN (ρd, ρs > 1) grids, where Nd and Ns are
the number of Doppler bins and the number of angle bins,
respectively [8], by ignoring the mismatch between the as-
sumed clutter space-time steering vectors and the true clutter
space-time steering vectors, (9) can be rewritten as

z̄ = V̄p̄ + σ2
ue
′
u, (10)

where the NdNs × 1 vector p̄ stands for the angle-Doppler
spectrum, and V̄ is a sparsity representation dictionary, given
by

V̄ = {b̆(ω1,c)⊗ ă(φ1,c), · · · , b̆(ω1,c)⊗ ă(φNd,c),

· · · , b̆(ωNs,c)⊗ ă(φNd,c)}.
(11)

It is noted that the elements of clutter angle-Doppler spec-
trum only occupy some of the whole angle-Doppler spectrum,
which results in sparsity. This has also been illustrated by pre-
vious researches about the sparsity-based STAP [9], [10].

In practice, we can only estimate the R by a finite number
of snapshots, which will result in estimate error. That is to say,
z̄ is bias-contaminated, i.e.,

ˆ̄z = V̄p̄ + σ2
ue
′
u + ε̄. (12)

Here, the vector p̄ can be derived by solving the following
optimization problem

ˆ̄p = arg min
p̄
‖p̄‖0 s.t. ‖ˆ̄z− V̄p̄− σ2

ue
′
u‖2 ≤ ζ (13)

where ‖ · ‖i(i = 0, 2) denotes the li-norm, ζ is a noise error
allowance which equals to the square root of variance of the ε̄.
It is well known that a number of effective methods has been
proposed to solve this type of problem in compressive sensing
area. In this paper, we adopt LASSO [11] method to solve the
sparse vector ˆ̄p. Once the ˆ̄p is solved, the covariance matrix
of the virtual space-time snapshot can also be estimated by

ˆ̄R = V̄diag(ˆ̄p)V̄H + σ̂2
uI. (14)

Then, the STAP filter is designed based on the derived virtual
covariance matrix ˆ̄R by maximizing the output SINR. So the
STAP filter vector is

w = γ ˆ̄R
−1

v(φt, ωt), (15)

where γ = 1/(v(φt, ωt)
HR̄−1v(φt, ωt)), and ωt and φt are

the normalized Doppler frequency and the spatial frequency
of the target, respectively.

3.3. Analysis of Errors of Virtual Construction by Using
Finite Snapshots

In order to set the value of the ζ, we derive distribution of ε̄ by
evaluating the effect of the finite sampling in the following.
First, we denote the estimate of vectorization of covariance
matrix of direct received signal due to finite sampling as

r̂ = vec(R̂)

=

Nc∑
i=1

σ2
i,cv
∗(φi,c, ωi,c)⊗ v(φi,c, ωi,c) + σ2

uiu + ε,
(16)

where iu = [eT1 , e
T
2 , · · · , eTMN ]T with ei(i = 1, 2, · · · ,MN)

denoting a MN × 1 column vector of all zeros except a 1 in
the ith entry, and ε = (r̂ − r) denotes the vectorization of
the bias of clutter covariance matrix induced by the effect of
finite number of space-time snapshots. The distribution of ε
is [13]

ε ∼ CN(0,
1

N
RT ⊗R). (17)

With consideration the process of derivation of z in (9), we
can easily note that the distribution of the ε̄ is different from
ε in r̂ of (16). It relies not only on the entries of R, but also
the arrangement transformation from r to z. Therefore, we
can derive the distribution of ε̄ by establishing the relation
between r and z.

First, we formulate the following expression

ε = Hε̄. (18)

where H ∈ {0, 1}(MN)2×[(3M1M2+M1−M2)(3N1N2+N1−N2)]

denotes the arrangement transformation which involves virtu-
al and equivalent process.

In reference with [12], the matrix H can be characterized
as

H = J−1(Ft ⊗ Fs), (19)

where J ∈ {0, 1}(MN)2×(MN)2 is a matrix with the ith
row being all zeros but a single 1 at position i + kNM −
lN2 + (l − k)N . Here, k = bmod(mod(i−1,N2M),N2)

N c,
l = bmod(i−1,N2M)

N2 c, b·c and mod(·) denote the round down
to the nearest integer and module operator, respectively.
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Ft = (Φt ⊗ Φt)GtΨ
−1
t , Fs = (Φs ⊗ Φs)GsΨ

−1
s with

(·)−1 denoting the Moore-Penrose inverse of matrix. Here,
by assuming M ′ = M2(2M1 − 1), Φt ∈ {0, 1}M×(M ′+1) is
a matrix with the ith row being all zeros but a single 1 at the
(mi + 1) position, and Gt ∈ {0, 1}(M

′+1)2×(2M ′+1) takes
the form

Gt =


0(M ′+1)×M ′ IM ′+1

0(M ′+1)×(M ′−1) IM ′+1 0(M ′+1)×1

...
...

...
IM ′+1 0(M ′+1)×(M ′)

 . (20)

In addition, Ψt ∈ {0, 1}(M
′+M1M2+M1)×(2M ′+1) is a ma-

trix with the ith row containing all zeros but a single 1 at
the (m̆i + M ′ + 1). Meanwhile, Φs ∈ {0, 1}N×(N ′+1),
Gs ∈ {0, 1}(N

′+1)2×(2N ′+1) with N ′ = N2(2N1 − 1), and
Ψs ∈ {0, 1}(N

′+N1N2+N1)×(2N ′+1) are derived by the simi-
lar process in time domain. Now, we combine (17) with (18)
to obtain

ε̄ ∼ CN(0,
1

N
H−1(RT ⊗R)(H−1)H). (21)

The variance of the ε̄ is the trace of covariance matrix
1
NH−1(RT ⊗R)(H−1)H .

4. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
algorithm (virtual SR) in terms of the output SINR perfor-
mance. In simulations, the parameters are: vp = 125m/s,
fc = 2.4GHz, N1 = M1 = 2, N2 = M2 = 3, and PRF =
4000Hz. The clutter is assumed to be distributed as an inde-
pendent zero-mean complex-valued Gaussian distribution. In
the sparsity-based STAP, ρd = ρs = 4, and ζ is set as the
square root of variance of ε̄. Simulation results are obtained
by averaging 100 independent Monte Carlo runs.

In the first simulation, we plot the SINR versus the num-
ber of snapshots used for training, as shown in Fig. 2(a). In
the examples, the target is assumed to be located at a range of
32km with normalized Doppler frequency of 0.3 and signal-
to-noise-ratio (SNR) of 0dB. The proposed algorithm shows
fastest convergence and best performance among the simulat-
ed STAP algorithms. This is because the proposed algorith-
m can fully exploit the large aperture of the space-slow-time
coprime samplers and also provide a high resolution of the
clutter spectrum without loss of the virtual DoFs.

In the second simulation, as shown in Fig. 2(b), the sta-
ble output SINR performance of above mentioned algorithms
are compared. The proposed algorithm achieves the theoreti-
cal performance with only 60 snapshots(denoted as snps). In
the third simulation, as shown in Fig. 2(c), the snapshots of
45 is considered for all simulated algorithms, the proposed
STAP algorithm still shows better SINR performance com-
pared with others due to increased DoFs in virtual domain and
high resolution characteristic of the sparse recovery methods.
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Fig. 2. Output SINR comparisons for direct physical STAP, sparsi-
ty recovery STAP in virtual domain, and spatial-temporal smoothed
based STAP.

5. CONCLUSION

We have proposed a sparsity-based STAP method by using the
spatial-temporal sparsity of clutter in virtual domain for air-
borne radar with the coprime array and coprime PRI. The pro-
posed algorithm first rearranges the received space-slow-time
coprime samplers into a large virtual snapshot, formulates it
as a sparse signal model, estimates the clutter spectrum us-
ing the sparse recovery method, and designs the STAP filter
by using the recovered clutter spectrum. It is found that the
advantages of the proposed algorithm lie in fully utilizing of
the DoFs offered by the virtual construction and high reso-
lution characteristic of the sparse recovery methods. Addi-
tionally, the analysis of errors of virtual construction by using
finite snapshots is conducted for the setting of the parameters
of the sparse recovery algorithms. Simulation results have
shown that the proposed algorithm outperforms the virtual
smoothed-based algorithm in terms of the output SINR per-
formance and convergence speed for the case of finite number
of snapshots.
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