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ABSTRACT
In this paper, we design constant modulus probing waveform-
s with low correlation sidelobes for colocated multi-input
multi-output (MIMO) radar. Through exploiting the structure
of the problem, we formulate it as a non-convex consensus
minimization problem. Then a customized alternating direc-
tion method of multipliers (ADMM) algorithm is proposed
to solve the problem, which is guaranteed convergent to its
stationary point. Numerical examples show that the proposed
approach offers better performance than the state-of-the-art
approaches. Moreover, parallel implementation structure in-
dicates that the proposed ADMM algorithm is suitable for
applications involving large dimensionality.

Index Terms— Constant modulus probing waveform,
beam pattern, MIMO radar, auto-/cross-correlation, ADMM.

1. INTRODUCTION

Compared to phased-array radar, colocated multi-input multi-
output (MIMO) radar system enjoys the advantage of wave-
form diversity [1], [2], which can generate desired transmis-
sion beampatterns, improving the directional resolution of the
system and suppressing the interference [3], [4]. In colocated
MIMO radar system, a key research topic is to design constant
modulus probing waveforms efficiently according to practical
applications, which has attracted a lot of attentions in recent
years [5]-[10]. In [8], a cyclic algorithm (CA) is proposed to
synthesize constant modulus waveform and pursue both auto-
and cross-correlation properties. A coordinate-descent frame-
work to design low PSL/ISL sequences is dealt with in [9],
which only considers autocorrelation properties. In [10], the
authors propose a double alternating direction method of mul-
tipliers (D-ADMM) algorithm to minimize the absolute-error
between the designed beampattern and the given beampattern.

In this paper, we still focus on this issue and design de-
sired beampatterns using constant modulus waveforms with
low spacial auto- and cross-correlation sidelobes. Through
exploiting the problem’s structure, it is modeled as a non-
convex consensus minimization problem. Different from the
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previous works in [5]-[10], it is the first time that this de-
sign problem is formulated into a separable problem including
many parallel subproblems. To efficiently solve these non-
convex subproblems, we propose a customized consensus-
ADMM algorithm. In it, all subproblems except one sub-
problem can be performed independently, which results in
much flexibility and efficiency from a practical point of view.
Moreover, the proposed consensus-ADMM algorithm is guar-
anteed convergent to some stationary point of the original
non-convex problem. Furthermore, Nesterov’s accelerated
gradient descent (AGD) method [11] and statistics gradient
descent (SGD) method [12] are adopted to improve the per-
formance of our proposed consensus-ADMM algorithm. Nu-
merical simulation results show that the proposed approach-
es compare favorably with the state-of-the-art approaches in
terms of both algorithm computational complexity and the s-
pacial correlation sidelobes.

2. PROBLEM FORMULATION

Consider a colocated MIMO radar system equipped with M
antennas in a uniform linear array. In the system, we set the
inter-element spacing d = λ

2 , where λ is the signal wave-
length. The spacial direction θ belongs to the angle set Θ.
The steer vector a ∈ CM at direction θ is given by

aθ =
[
1, ej2πd sin(θ)/λ, · · · , ej2π(M−1)d sin(θ)/λ

]T
. (1)

The probing waveform transmitted by the m-th antenna is
denoted by xm = [xm(1), · · · , xm(N)]T ,m = 1, · · · ,M .
Then, the waveforms transmitted by the MIMO radar system
can be expressed as the following N -by-M matrix

X = [x1, · · · ,xM ]. (2)
The synthesized signal at the spacial direction θ is Xaθ .
Then, the beampattern, which describes the power distribu-
tion at the spacial direction θ can be described by

Pθ = aHθ XHXaθ. (3)
Let Sn denote an off-line diagonal matrix, where n denotes
the delay parameter. Then, the time-delayed waveform can
be expressed by SnXaθ. The spacial correlation of the wave-
form and its delayed version can be defined as

Pθi,θj ,n = aHθiX
HSnXaθj , (4)

3305978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



where θi, θj ∈ Θ̂ ⊂ Θ and Θ̂ = {θ1, · · · , θK} is the angle
set of the desired beampatterns.

In this paper, we design desired beampatterns using con-
stant modulus waveforms with low spacial auto- and cross-
correlation sidelobes. To reach this goal, we develop the fol-
lowing optimization model

min
α,X

ω2e(α,X) + ω2
cPc(X),

s.t. |xm(n)| = 1, n = 1, · · · , N ;m = 1, · · · ,M,
(5)

where
e(α,X) =

∑
θ∈Θ

|αP̄θ − aHθ XHXaθ|2, (6a)

Pc(X)=
∑

n∈T \0

∑
θi∈Θ̂

|Pθi,θi,n|2+
∑
n∈T

∑
θi ̸=θj

θi,θj∈Θ̂

|Pθi,θj ,n|2, (6b)

ω and ωc are preset positive real weights and T is the tempo-
ral delay parameter set of interest. In (5)’s objective function,
the first term e(α,X) represents the mismatching square er-
ror between the designed beampattern and the desired beam-
pattern P̄θ. The second term Pc(X) is the spacial correla-
tion function, which describes the auto- and cross-correlation
sidelobes at spacial directions of interest. α is a positive scal-
ing variable to be optimized.

Since every element in X is constant modulus, we can
drop the non-convex constant modulus constraints through
letting X’s phase Φ be variable and rewrite (5) as an uncon-
strained minimization problem

min
α,Φ

ω2e(α,X(Φ)) + ω2
cPc(X(Φ)). (7)

Moreover, we define the following quantities

aθ,θ = vec(aθaHθ ), p =
∑
θ∈Θ

P̄θ,

q = −
∑
θ∈Θ

P̄θaθ,θ, A =
∑
θ∈Θ

aθ,θa
H
θ,θ.

(8)

Then, the first term in (7) can be equivalent to
ω2e(α,Φ) = vH(α,Φ)Qv(α,Φ), (9)

where

v(α,Φ) =

[
α

vec
(
XH(Φ)X(Φ)

) ]
,Q = ω2

[
p qH

q A

]
.

In addition, define matrices Bn(Φ), for n = 0

Bn(Φ) =

 0, Pθ1,θ2,n · · · Pθ1,|Θ̂|,n
...

. . .
...

...
P|Θ̂|,θ1,n P|Θ̂|,θ2,n · · · 0

 ,

and for n ∈ T \0

Bn(Φ) =

 Pθ1,θ1,n Pθ1,θ2,n · · · Pθ1,|Θ̂|,n
...

. . .
...

...
P|Θ̂|,θ1,n P|Θ̂|,θ2,n · · · P|Θ̂|,|Θ̂|,n

 .

where |Θ̂| is the set Θ̂’s size. Then, Pc(X(Φ)) in (7) can be
rewritten as

Pc(X(Φ)) =
∑
n∈T

∥Bn(Φ)∥2F . (10)

Combing (9) and (10), we can obtain the following compact
form of objective function

ω2e(α,X(Φ)) + ω2
cPc(X(Φ)) = h(α,Φ) +

∑
n∈T

fn(Φ)

where
h(α,Φ) = vH(α,Φ)Qv(α,Φ), (11a)

fn(Φ) = ω2
c∥Bn(Φ)∥2F . (11b)

Then, the problem (7) can be equivalent to the following con-
sensus problem by introducing a set of auxiliary variables
{Φn|n ∈ T }

min
α,{Φ,Φn}∈RN×M

h(α,Φ) +
∑
n∈T

fn(Φn),

s. t. Φn = Φ, n ∈ T .

(12)

In comparison with (7), the model (12) allows each subfunc-
tion fn(Φn) to handle its local variable Φn independently.
Through exploiting this kind of structure, we develop an effi-
cient parallel and theoretically convergence guaranteed solv-
ing algorithm for the optimization problem. To the best of my
knowledge, it is the first time that parallel algorithm structure
is introduced to match the desired spacial beampattern in the
MIMO radar system.

3. CUSTOMIZED CONSENSUS-ADMM SOLVING
ALGORITHMS

The augmented Lagrangian function of the problem (12) can
be written as
L(α,Φ, {Φn,Λn|n ∈ T }) = h(α,Φ)

+
∑
n∈T

[
fn(Φn) + ⟨Λn,Φn −Φ⟩+ ρn

2
∥Φn −Φ∥2F

]
, (13)

where {Λn|n ∈ T } are Lagrangian multipliers and {ρn|n ∈
T } are corresponding penalty parameters. We define

Ln(Φ,Φn,Λn)=fn(Φn)+⟨Λn,Φn−Φ⟩+ ρn
2
∥Φn−Φ∥2F .

Then, the consensus-ADMM algorithm framework can be de-
scribed as
{αk+1,Φk+1}=argmin

α,Φ
L(α,Φ,{Φk

n,Λ
k
n|n ∈ T }), (14a)

Φk+1
n = argmin

Φn

Ln(Φ
k+1,Φn,Λ

k
n), n ∈ T , (14b)

Λk+1
n = Λk

n + ρn(Φ
k+1
n −Φk+1), n ∈ T . (14c)

Since h(α,Φ) and fn(Φn) are non-convex, (14a) and
(14b) are difficult to be solved directly. But we can find that
∇h(α,Φ) and ∇fn(Φ) are Lipschitz continuous with the
constant L>max{2p, 4ω2M3N |Θ̂|} and Ln>4ω2

cK
2M2N

respectively. It means that the upper bound quadratic func-
tions of L(α,Φ, {Φk

n,Λ
k
n|n ∈ T }) and Ln(Φ

k+1,Φn,Λ
k
n)

can be given by (15) and (16) respectively.
U(α,Φ, {Φk

n,Λ
k
n|n ∈ T }) = h(αk,Φk)

+⟨∇Φh(α
k,Φk),Φ−Φk⟩+⟨∇αh(α

k,Φk), α−αk⟩

+
L

2
(∥Φ−Φk∥2F +|α−αk|2) +

∑
n∈T

Un(Φ,Φk
n,Λ

k
n).

(15)
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Un(Φ
k+1,Φn,Λ

k
n)=fn(Φ

k+1)+⟨Λk
n,Φn−Φk+1⟩

+⟨∇fn(Φ
k+1),Φn−Φk+1⟩+ ρn+Ln

2
∥Φn−Φk+1∥2F .

(16)

Based on (14), (15) and (16), we propose a customized
consensus-ADMM algorithm summarized in the following ta-
ble.

Algorithm 1 The proposed consensus-ADMM algorithm
1: Initialization: Compute Lipschitz constants L and

{Ln|n ∈ T }. Set {Λ1
n|n ∈ T } and {Φ1 = Φ1

n|n ∈ T }.
2: repeat
3: (αk+1,Φk+1) = argmin

α,Φ
U(α,Φ, {Φk

n,Λ
k
n}).

4: Φk+1
n = argmin

Φn

Un(Φ
k+1,Φn,Λ

k
n), n ∈ T .

5: Λk+1
n = Λk

n + ρn(Φ
k+1
n −Φk+1), n ∈ T .

6: until some preset condition is satisfied.

It should be noted that for all n ∈ T , the variables in step
4 and step 5 are independent of each other, which means |T |
pair updates can be executed in parallel. This is the main d-
ifference between the proposed consensus-ADMM algorithm
and previous works including [6], [8] and [10].

4. ANALYSIS AND IMPROVEMENTS
4.1. Convergence

We have the following theorem to show that the proposed
consensus-ADMM algorithm converges to some stationary
point under some wild condition. Due to limited space, the
details of the proof will be given in a future paper.

Theorem 1: For all n ∈ T , if penalty parameters ρn and
Lipschitz constants Ln satisfy ρn > 5Ln, the proposed AD-
MM algorithm is convergent, i.e.,

lim
k→∞

αk = α∗, lim
k→∞

Φk = Φ∗,

lim
k→∞

Φk
n = Φ∗

n, lim
k→∞

Λk
n = Λ∗

n.

and (α∗,Φ∗, {Φ∗
n|n ∈ T }) is some stationary point of prob-

lem (12).

4.2. Computational Complexity

Since U(α,Φ, {Φk
n,Λ

k
n|n ∈ T }) and Un(Φ

k+1,Φn,Λ
k
n)

are strongly quadratic functions, their minimizers can be ob-
tained by solving linear equations ∇U(α,Φ, {Φk

n,Λ
k
n|n ∈

T }) = 0 and ∇Un(Φ
k+1,Φn,Λ

k
n) = 0, i.e.,

αk+1 = αk − ∇αh(α
k,Φk)

L
, (17a)

Φk+1=

LΦk−∇Φh(α
k,Φk)+

∑
n∈T

(Λk
n+ρnΦ

k
n)

L+
∑
n∈T

ρn
, (17b)

Φk+1
n = Φk+1 − ∇fn(Φ

k+1) +Λk
n

ρn + Ln
. (17c)

Observing (17), we see that the main computational
cost of each ADMM iteration is dominated by the cal-
culation ∇h(α,Φ) and ∇fn(Φ). For ∇h(α,Φ), it takes
O(M2(N +M2)) complex multiplications. As for ∇fn(Φ),
its computing complexity can be efficiently obtained by
O(KMN) complex multiplications. So the total compu-
tation complexity of the each ADMM iteration is rough
O(max{K|T |N,M3, NM}M).

4.3. Improvements

Speed up convergence: To improve the Algorithm 1’s con-
vergence rate, we can exploit the following AGD method.

Φ̂k+1
n = argmin

Φn

Un

(
Φk+1,Φn,Λ

k
n

)
, (18a)

Φk+1
n = Φ̂k+1

n + γk

(
Φ̂k+1

n − Φ̂k
n

)
, n ∈ T . (18b)

where γk = k−1
k+r−1 . In γk, r ≥ 3 is some preset constant.

Reduce complexity: For different n1, n2 ∈ T , {Φn1 ,Λn1}
and {Φn2 ,Λn2} are updated in parallel. This structure can
allow us to update a part of elements in T , which leads to
SGD method to reduce computational complexity of each
ADMM iteration.

Embedding the above two strategies into the Algorithm 1,
we propose an improved consensus-ADMM algorithm in the
following table.

Algorithm 2 The improved consensus-ADMM algorithm
1: Initialization: Compute Lipschitz constants L and

{Ln|n ∈ T }. Set {Λ1
n|n ∈ T } and {Φ1 = Φ1

n|n ∈ T }.
2: repeat
3: (αk+1,Φk+1) = argmin

α,Φ
U(α,Φ, {Φk

n,Λ
k
n|n ∈ T }).

4: Select a subset Tk ⊂ T randomly.1

5: If n ∈ Tk, implement the followings in parallel
6: Compute Φk+1

n via (18).
7: Λk+1

n = Λk
n + ρn(Φ

k+1
n −Φk+1).

8: endif.
9: until some preset condition is satisfied.

5. SIMULATION RESULTS

We present numerical examples to illustrate the performance
of the proposed ADMM algorithms. The parameters are set
as M = 8, 16, N = 32, 64, 128 and n ∈ [−16, 16]. The set
of the angle Θ covers (−90◦, 90◦) with spacing 1◦. Two di-
rections of interest θ1 = −40◦ and θ2 = 30◦ are considered.
Three other state-of-the-art algorithms L-BFGS method [6],
CA approach [8] and D-ADMM [10] algorithm are carried
out for comparisons. The weights (ω, ωc) are (1, 10). The
desired beampattern is

P̄θ =

{
1, θ ∈ [θi − 10◦, θi + 10◦], i = 1, 2,
0, otherwise .

1Usually, criteria of selecting Tk is to guarantee every element in T is
implemented equally in probability.
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Table 1. Comparisons of MSE.
(N,M) (128, 16) (128, 8) (64, 16) (64, 8) (32, 8)

MSE
CA approach 1.9× 10−2 3.1× 10−2 1.9× 10−2 3.1× 10−2 3.1× 10−2

L-BFGS 1.6× 10−2 3.0× 10−2 1.6× 10−2 3.0× 10−2 3.0× 10−2

D-ADMM � 2.9× 10−2 1.5× 10−2 3.0× 10−2 2.9× 10−2

consensus-ADMM 1.5× 10−2 2.9× 10−2 1.5× 10−2 3.0× 10−2 3.0× 10−2
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Fig. 1. Comparisons of the convergence performance.

We set the maximum iteration number to be 2000. The pa-
rameter r in AGD method is 3.

Figure 1 plots convergence curves of the algorithms in
L-BFGS [6], CA approach [8], D-ADMM [10] and our pro-
posed consensus-ADMM algorithms. Here SGD-25% means
that we update one fourth elements in set T . From the figure,
we see that ADMM-AGD algorithm enjoys the fastest conver-
gence rate. In comparison, ADMM-SGD-25%’s convergence
is a little bit slower. However, we should note that it has lower
computational complexity.
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Fig. 2. Comparisons of the synthesized beampatterns with
N = 128 and M = 8.

Table 1 lists the mean square error (MSE) between the
designed beampattern and the desired one. From the table and
Figure 2, we can see that the generated beampatterns of all
four methods can approximate the desired beampattern very

well. Here, we should note that the computation complexity
of our proposed algorithm is O(max{K|T |N,M3, NM}M),
which is similar to L-BFGS method and D-ADMM, but much
lower than CA approach. However, we should note that our
proposed algorithm can be implemented in parallel. It means
that it is much more suitable, especially for large-scale appli-
cations, than the other three algorithms from a practical point
of view.
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Fig. 3. Comparisons of the normalized spacial auto-/cross-
correlation levels with N = 128 and M = 8.

Figure 3 shows the normalized auto-/cross-correlation
levels of the different algorithms for interval [−16, 16]. From
the figure, we can see that the proposed consensus-ADMM
algorithms enjoy the best correlation levels performance a-
mong all algorithms.

6. CONCLUSION

In this paper, we design constant modulus probing wave-
forms with low correlation sidelobes for colocated MIMO
radar. Through exploiting the structure of the problem, we
exploit ADMM techniques to solve the corresponding non-
convex consensus problem approximately. We show that the
proposed ADMM algorithm is guaranteed convergent to its
stationary point. Moreover, parallel implementation structure
indicates that the proposed consensus-ADMM algorithms are
suitable for large scale applications. Numerical examples
demonstrate their effectiveness.
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