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ABSTRACT

Focusing on the signal-to interference-plus-noise ratio
(SINR) maximization in colocated multiple-input multiple-
output (MIMO) radars, using the covariance matrix design
of transmitted waveforms, we propose a kind of transmit
covariance matrix (TCM) pmR with the form of symmetrical
Toeplitz matrix, whose full rank characteristic firstly can
sufficiently exploit the waveform diversity advantage of
MIMO radar to further suppress the maximum number of
interfering sources. Meanwhile, the positive semi-definition
characteristic of   sin 2 pm R guarantees that these TCMs
can be synthesized with binary phase shift keying (BPSK)
waveforms in closed form. Furthermore, employing certain
proposed TCM, higher SINR level can be yielded, and
lower sidelobe levels (SLLs) can be obtained for the
unwanted sidelobe interference suppression. Simulation
results validate the better performance of our proposed
TCMs in comparison with the phased array, omnidirectional
MIMO radar and the recently proposed TCMs.

Index Terms—colocated MIMO radar, transmit
covariance matrix, Toeplitz matrix, SINR maximization

1. INTRODUCTION

 For the multiple-input multiple-output (MIMO) radar,
waveform design always is one of the most important issues
[1-14], which generally can be classified into the direct or
indirect methods. In the direct design approaches [1-6], the
transmitted signal symbols are directly calculated and some
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special waveform characteristics must be considered to be
satisfied, such as orthogonality, low peak-to-average power
ratio, constant modulus, similarity constraints and so on [6].
However, due to the flexibility and lower system design
complexity, the indirect MIMO waveform design has
recently received much attention [7-13], where the transmit
covariance matrix (TCM) R of the transmitted signals is
first designed, and then the transmitted waveform symbols
are generated. As shown in [7][8], for a given positive semi-
definite R, binary phase shift keying (BPSK) waveforms
can be synthesized to realize R in closed form. Focusing on
the TCM-based waveform design, some methods have been
proposed [9-13]. In [9], a TCM R2x using a cosine Toeplitz
matrix is presented and yield gains in SINR level. Though
the sidelobe levels (SLLs) of receive beampattern using R2x
are lower, the rank of R2x is only 2, that is, the most
important degree of freedom (DOF) advantage cannot be
exploited for the interference suppression. Moreover,

  2sin 2 x R is not positive semi-definite [9][10], which
cannot guarantee to synthesize R2x with BPSK in closed
form. Considering the full-rank constraint of R and positive
semi-definition of   sin 2 R , two Toeplitz matrices 1pR

and 2pR are proposed as TCMs to achieve higher SINR
levels in [10], however, the full rank property of these two
TCMs is not proofed rigorously and the achieved SINR is
not the optimum with the prior knowledge of locations.

In this paper, we have extended the two matrices in [10]
to a kind of more general symmetrical Toeplitz matrix pmR

as the TCMs, where  0 3 1t tm M M   is the control
parameter and 2tM  denotes the number of transmit
antennas. It is demonstrated that pmR is full-ranked and

  sin 2 pm R is also positive semi-definite. Moreover,

the pmR with smaller m yields higher SINR level, and even
gets closed to the one of phased array. While the pmR with
certain larger m (e.g. m =1.5 or 2) could obtain the receive
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beampattern with lower SLLs, which is beneficial to
suppress the unwanted sidelobe interferences.

2. PROBLEM FORMULATION

Consider a colocated MIMO radar system equipped with a
transmit uniform linear array (ULA) of tM elements and a
receive ULA of rM elements. Each transmit element emits

a distinct waveform ( )m ns and 1 2( ) ( ), ( ), , ( )
t

T

Mn n n n   s s s s

is assumed as a 1tM  vector of transmitted waveforms at
the nth snapshot, then the signal received by the ith source at
a spatial location i is ( ) ( )T

i na s , where ( )ia is the
transmit steering vector. Denoting the receive steering
vector with ( )ib , when there is a target located at 0 and
Q signal-dependent interfering sources at i ( 1,2, ,i Q  ),
further the received vector can be written as [9-13]

0 0 0
1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
Q

T T
i i i

i
n n n n     



  y b a s b a s v (1)

where 0 and i are the complex reflection coefficients of
the target and the ith interfering source, respectively, which
obey the Swerling II model [13].  2( ) 0, vn N v  denotes

the zero-mean Gaussian noise term with covariance 2
v .

The received echo is first passed through tM filters, i.e.
each one matched to one of the transmitted waveforms.
Then the 1t rM M  filters’ outputs stacking in one column
vector is obtained as [14]

0 0 0
1

= ( ) ( ) ( ) ( )
Q

i i i c
i

     


   z b Ra b Ra v (2)

where   20,
rc v MN  v I R stands for the colored

Gaussian noise vector,  symbolizes the Kronecker

product,  
1

1 ( ) ( ) 0
N

H

n
N n n



 R s s  refers to the TCM,

which is directly related with the sampled waveforms.
0R  denotes that R is positive semi-definite and N is the

sample number.
In view of the monotonic relation between the detection

probability and SNR/SINR [15], the design criterion of R
and receive filter ω is always the SINR maximization. The
SINR of signal in (2) is given by [16][17]

   2

0 0= ( ) ( )H H
inSINR   ω b Ra ω R ω (3)

where  2

1
( ) ( )

r

Q

in i i i M
i
  



   R b Ra I R denotes the

interference-plus-noise covariance matrix,
tM

I refers to a

t tM M identity matrix,  2 2
0 vE   ,  2 2

i i vE  

and  E is the statistical expectation. By employing the

principle of minimum variance distortionless response
(MVDR), the optimum receive filter and the maximum
(optimum) SINR can be derived as (4) and (5), respectively.
It is seen that R can be optimized for the MIMO radar
waveform design and SINR improvement.

1
0 0

1
0 0 0 0

( ) ( )
( ) ( ) ( ) ( )

in
H H H

in

 
   








 
R b Raω

b a R R b Ra
(4)

1
0 0 0 0( ) ( ) ( ) ( )H H H

inoptSINR       b a R R b Ra (5)

3. PROPOSED TCMWITH THE FORM OF
TOEPLITZ MATRIX

It is known that employing a proper TCM, the transmitted
power can be cohered in the region of interest (ROI) and the
power of back scattered signals from target at the receiver
can increase [10]. To improve the SINR and consider the
SINR level of phased array as an upper limit, a kind of more
general symmetrical Toeplitz matrix pmR is proposed as the
TCM for the waveform design of colocated MIMO radars
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1
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t t
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t
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 
 
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 
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

 

  



(6)

where  0 3 1t tm M M   is the control parameter to
generate difference TCM. Especially, when 1m  ,

1pm pR R , when 2m  , 2pm pR R in [10], and

  1 2sin 2 p x R R in [9]. It is obvious that pmR can be
characterized only by its first row or first column. Let

     11

0 0
( ) tt MM

t td d
h d M dm M



 
  denote the elements in the

first row and assume   1

0( ) tM

kH k 


are the frequency domain

samples for   1

0( ) tM

dh d 


followed with the tM -point discrete

Fourier transformation, then we can proofed that pmR is
full-ranked based on the lemma in [18]. The detailed proof
is not shown here for the limited length of paper.

3.1. Maximum SINR for only noise

For the only-noise case without interferences in (5), we have

  11 1
r rin M pm M pm

    R I R I R using   1 1 1    A B A B ,

and the maximum SINR employing pmR can be formulated

as (7) based on          A B C D AC BD
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For the simplify of derivation, it is always assumed that the
target is located at 0 0o  , hence  0( ) 1,1, ,1 T a  and
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where k is the row index. By employing
1

( 1) 2
n

q
q n n


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and 2 3 2

1
3 2 6

n

q
q n n n



   , (7) can be derived as
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Note that for  0 3 1t tm M M   , we can arrive at

21
3 3t t
m mM M    

 
(10)

That is, the maximum SINR level using pmR outperforms

the one of omnidirectional MIMO radar ( m r tSINR M M ).
Meanwhile, when 0m , the SINR level in (9) gets closed
to the optimum one of phased array ( 2

p r tSINR M M ).
Therefore, we can conclude m pm pSINR SINR SINR  .

Especially, when 1m  ,   2
1 2 3 1 3p r tSINR M M  ,

when 2m  ,   2
2 1 3 2 3p r tSINR M M  in [10].

3.2. Synthesis with BPSK waveforms

In the finite alphabet correlated waveform design [7][8], the
desired TCM R can be built from BPSK samples x’s, where

( )x sign r and r’s are Gaussian random variables with
covariance matrix sR . Meanwhile, the relationship

 ( , ) sin 0.5 ( , )s m n m nR R must be satisfied, i.e.

 sin 0.5s R R [7][8], where ( , )m nR stands for the mth
row and nth column element of R . Since sR is positive
semi-definite for the realization of R using BPSK
waveforms in closed form, therefore  sin 0.5R has to be
positive semi-definite [10][15]. Fortunately, we can derive
(11) from (12) for the eigenvalue solving.

 2 2 2

2

1 cos1 0
4

8sin
2

tM
t t

t
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M M

m
M


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


  
  

                

(11)

   det sin 2 0
tpm M  R I (12)

then we can conclude that  sin 0.5 pmR has 2tM  zero
eigenvalues and two non-zero eigenvalues as

  

  

1

2

1 1 cos 1 cos 0
2 2

1 1 cos 1 cos
2 2

t

t

t

t

M mm
M

M mm
M

 

 

              

   

          

(13)

For  0 3 1t tm M M   , it is easily derived that 2 0  .

Furthermore,  sin 0.5 pmR . Herein, the detailed proof is
also not given for the limited length of paper.

Actually, let   1
1 sin 2 tm M  and   1

2 sin 2 tm M   ,

then   sin 2 pm R is positive semi-definite and can be
reformulated as the auto-correlation matrix sum of two
orthogonal steering vectors 1( )t a and 2( )t a , i.e.

     1 1 2 2sin ( 2) 1 2 ( ) ( ) ( ) ( )H H
pm t t t t     R a a a a (14)

The angle difference between 1 and 2 is   12sin 2 tm M ,

which is the minimum difference for 1( )t a and 2( )t a to
be orthogonal.

4. SIMULATION RESULTS

In our simulation, to evaluate the performance of the
representative TCMs pmR , where m is selected from 0.5 to
2.5 with the interval 0.5, two examples are presented in
comparison with the phased array, conventional
omnidirectional MIMO radar, and the scheme using 2xR in
[9]. The target is located at 0 0o  , where the power is
expected to be cohered. The total transmitted power equals
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to Mt and the MVDR beamformer is employed as the
receiving filter.

In the first example, it is assumed that 10tM  ,
10rM  and there are two signal-dependent interfering

sources located at 1 15o   and 2 25o  with the
interference-to-noise ratio (INR) 30 dB. Fig. 1 depicts the
obtained SINR levels of the compared schemes with
different SNR and the receive beampatterns are shown in
Fig. 2. It can be seen that: (a) The SINR level using each

pmR is higher than the one of conventional MIMO radar,
and higher SINR level can be obtained by employing pmR
with smaller m. Meanwhile, 0.5pR outperforms the other
MIMO radar schemes and gets closed to the phased array,
which benefits from that the transmitted power using pmR
with smaller m are more cohered in the target sector of
interest (SOI), when there are deep nulls (less than -30 dB)
in the direction of interferences. (b) Compared to 2xR in [9],
whose rank is only 2, pmR is firstly full-ranked and can
sufficiently exploit the benefits of full waveform diversity to
reject more interferences. Besides, as a special case, 2pR
has comparable low SLLs with 2xR in Fig. 2. The SLLs
using 1.5pR are also low. The low SLLs are beneficial to
suppress the unwanted interferences out of SOI.
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Fig. 1. SINR versus SNR, where 10t rM M  .
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Fig. 2. Receive beampatterns, where 10t rM M  .

To show the maximum capability of interference
suppression of all schemes, in second simulation, we assume
that 6tM  , 6rM  and there are 12 interfering sources
located at 25o, -25o, -85o, 80o, 15o, -10o, 30o, -70o, 55o, 45o, -
40o, 50o. Fig. 3 shows the average SINR level for different
number of interfering sources. Since pmR are full-ranked,
the colocated MIMO radar using pmR can suppress
2 -2 10tM  interfering sources. While the phased array only
can suppress -1 5tM  interfering sources and the scheme
using 2xR can suppress +2  1 7tM   interfering sources.
From Fig. 3, it is seen that when the interfering source
number 5iN  , the average SINR level of phased-array
radar drops obviously, when 7iN  , the one of scheme
using 2xR in [9] also degrades. In contrast, the schemes
using pmR can suppress the interferences effectively with
the average output SINR>32dB. Also, the average SINR
level using 0.5pR outperforms the others.
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Fig. 3. Average SINR level comparison for different number
of interfering sources, where 6t rM M  .

5. CONCLUSIONS

In this paper, a kind of TCM pmR with the form of
symmetrical Toeplitz matrix has been proposed for the
waveform design of colocated MIMO radars. Compared to
the TCM 2xR in [9], the rank of which is only 2, pmR is

full-ranked and   sin 2 pm R is positive semi-definite,

which guarantees that pmR can sufficiently exploit the
advantage of full waveform diversity and also can be
synthesized with BPSK waveforms in closed form. The
proposed TCMs all yield gains in SINR level compared to
the omnidirectional MIMO radar. Simulation results show
that when the directions of target and interfering sources are
known, the SINR level using pmR with small m is higher
than the counterparts. Meanwhile, lower SLLs can be
obtained with certain lager m (e.g. m =1.5 or 2) for the
unwanted sidelobe interference suppression.
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