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ABSTRACT
In this paper, the multiple-input multiple-output (MIMO)
transmit beampattern matching problem is considered. The
problem is formulated to approximate a desired transmit
beampattern (i.e., an energy distribution in space and fre-
quency) and to minimize the cross-correlation of signals
reflected back to the array by considering different practical
waveform constraints at the same time. Due to the noncon-
vexity of the objective function and the waveform constraints,
the optimization problem is highly nonconvex. An efficient
one-step method is proposed to solve this problem based
on the majorization-minimization (MM) method. The perfor-
mance of the proposed algorithms compared to the state-of-art
algorithms is shown through numerical simulations.

Index Terms— MIMO, waveform diversity, beampattern
design, waveform constraints, nonconvex optimization.

1. INTRODUCTION
Multiple-input multiple-output (MIMO) systems [1] have the
capacity to transmit independent probing signal or waveforms
from each transmit antenna. Such waveform diversity fea-
ture leads to many desirable properties for MIMO systems.
For example, a modern MIMO radar has many appealing fea-
tures, like higher spatial resolution, superior moving target
detection and better parameter identifiability, compared to the
classical phased-array radar [2, 3, 4].

The MIMO transmit beampattern matching problem is
critically important in many fields, like in defense systems,
communication systems, and biomedical applications. This
problem is concerned with designing the probing waveforms
to approximate a desired antenna array transmit beampat-
tern (i.e., an energy distribution in space and frequency) and
also to minimize the the cross-correlation of the signals re-
flected back from various targets of interest by considering
some practical waveform constraints. The MIMO transmit
beampattern matching problem appears to be difficult from
an optimization point of view because the existence of the
fourth-order nonconvex objective function and the possibly
nonconvex waveform constraints which are used to repre-
sent desirable properties and/or enforced from an hardware
implementation perspective [5].

This work was supported by the Hong Kong RGC 16206315 research
grant.

In [6], the MIMO transmit beampattern matching problem
was formulated to minimize the difference between the de-
signed beampattern and the desired one. The formulation in
[6] was modified in [7, 8] by introducing the cross-correlation
between the signals. And in [8], the authors proposed to de-
sign the waveform covariance matrix to match the desired
beampattern through semidefinite programming. A closed-
form waveform covariance matrix design method was also
proposed based on discrete Fourier transform (DFT) coeffi-
cients and Toeplitz matrices in [9, 10]. But such kind of
methods can perform badly for small number of antennas. Af-
ter the waveform covariance matrix is obtained, other meth-
ods should be applied to synthesize a desired waveform from
its covariance matrix. For example, a cyclic algorithm was
proposed in [11] to synthesize a constant modulus waveform
from its covariance matrix. These methods are usually called
two-steps methods. In practice, they could become inefficient
and suboptimal if more waveform constraints are considered.

In [12], it was found that directly designing the waveform
to match the desired beampattern can give a better perfor-
mance, which is referred to as the one-step method. But the
method in [12] is tailored to the constant modulus constraint
and can be slow in convergence. In [13], the problem was
solved based on the alternating direction method of multipli-
ers (ADMM) [14]. However, again the proposed algorithm is
only designed for dealing with unimodulus constraint.

The majorization-minimization (MM) method [15, 16]
has shown its great efficiency in deriving fast and convergent
algorithms to solve nonconvex problems in many different
applications [17, 18]. In this paper, we propose a one-step
method to directly solve the MIMO transmit beampattern
matching problem based on the MM method by considering
different waveform constraints. The performance of our algo-
rithms compared to the existing algorithms is verified through
numerical simulations.
2. MIMO TRANSMIT BEAMPATTERN MATCHING

PROBLEM FORMULATION
A colocated MIMO radar [19] with M transmit antennas in a
uniform linear array (ULA), as shown in Fig. 1, is considered.
Each transmit antenna can emit a different waveform xm (n)
withm = 1, 2, . . . ,M , n = 1, 2, . . . , N , whereN is the num-
ber of samples. Let x (n) = [x1 (n) , x2 (n) , . . . , xM (n)]

T

be the nth sample of the M transmit waveforms and x =
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Fig. 1. MIMO transceiver with M antennas and θ is the spa-
cial direction of interest.

[
xT (1) ,xT (2) , . . . ,xT (N)

]T
denote the waveform vector.

The signal at a target location with angle θ (θ ∈ Θ, which
is the angle set) is represented by∑M

m=1 e
−jπ(m−1) sin θxm (n) = aT (θ)x (n) , n = 1, . . . , N,

where a (θ) is the transmit steering vector written as a (θ) =[
1, e−jπ sin θ, . . . , e−jπ(M−1) sin θ

]T
. Then, the power for the

probing signal x at location θ which is named the transmit
beampattern can be written as follows:

P (θ,x) =
∑N
n=1

(
aT (θ)x (n)

)∗ (
aT (θ)x (n)

)
=
((
IN ⊗ aT (θ)

)
x
)H ((

IN ⊗ aT (θ)
)
x
)

= xH
(
IN ⊗ a∗ (θ)aT (θ)

)
x = xHA (θ)x,

where A (θ) = IN ⊗ a∗ (θ)aT (θ).
Suppose there are K targets of interest, and then the

spatial cross-correlation sidelobes (cross-correlation beam-
pattern) between the probing signals at locations θi and θj
(i 6= j, i, j = 1, . . . ,K and θi, θj ∈ Θ) is given by
Pcc (θi, θj ,x) =

∑N
n=1

(
aT (θi)x (n)

)∗ (
aT (θj)x (n)

)
=
((
IN ⊗ aT (θi)

)
x
)H ((

IN ⊗ aT (θj)
)
x
)

= xH
(
IN ⊗ a∗ (θi)a

T (θj)
)
x = xHA (θi, θj)x,

where A (θi, θj) = IN ⊗ a∗ (θi)a
T (θj).

The objective of the transmit beampattern matching prob-
lem is as follows: i) to match a desired transmit beampattern
denoted as p (θ), which can be formulated as follows1:

J (α,x) =
∑
θ∈Θ ω (θ) |αp (θ)− P (θ,x)|2 , (1)

where ω (θ) ≥ 0 is the weight for the direction θ; and ii) to
minimize the cross-correlation between the probing signals
at a number of given target locations due to the fact that the
statistical performance of adaptive MIMO radar techniques
rely on the cross-correlation beampattern, which is given as

E (x) =
∑
θi,θj∈Θ, i 6=j |Pcc (θi, θj ,x)|2 . (2)

Then, by considering J (α,x) and E (x), the MIMO transmit
beampattern matching problem is formulated as follows:

minimize
α,x

f (α,x) , J (α,x) + ωccE (x)

subject to x ∈ X , X0 ∩ (∩iXi) ,
(3)

1Variable α is introduced since p (θ) is typically given in a “normalized
form” and we want to approximate a scaled version of p (θ), not p (θ) itself.

where ωcc controls the sidelobe term, X generally denotes the
waveform constraint, and X0 =

{
x ∈ CMN | ‖x‖22 = c2e

}
representing the total transmit energy (power) constraint.
We are also interested in other practical waveform con-
straints. i) Constant modulus constraint is to prevent
the non-linearity distortion of the power amplifier to max-
imize the efficiency of the transmitter, which is given by
X1 =

{
x | |x (l)| = cd = ce√

MN

}
for l = 1, . . . ,MN .

ii) Peak-to-Average Ratio (PAR) constraint is the ratio
of the peak signal power to its average power (PAR (x) =
max|x(l)|2

‖x‖22/MN
with 1 ≤ PAR (x) ≤ MN ). The PAR (x) is con-

strained to a small threshold, so that the analog-to-digital and
digital-to-analog converters can have lower dynamic range,
and fewer linear power amplifiers are needed. Since X0, the
PAR constraint is X2 =

{
x | |x (l)| ≤ cp, ce√

MN
≤ cp ≤ ce

}
for l = 1, . . . ,MN . iii) Similarity constraint is to allow the
designed waveforms to lie in the neighborhood of a reference
one which already can attain a good performance [20], which
is denoted as X3 =

{
x | |x− xref | ≤ cε, 0 ≤ cε ≤ 2√

MN

}
.

Problem (3) is a constrained nonconvex problem due to
the nonconvex objective and constraints. We are trying to
solve it by using efficient nonconvex optimization methods.

3. PROBLEM SOLVING VIA THE MM METHOD

3.1. The Majorization-Minimization (MM) Method

The MM method [15, 21, 16] is a generalization of the well-
known EM method. For an optimization problem given by

minimize
x

f (x) subject to x ∈ X ,

instead of dealing with this problem directly which could be
difficult, the MM-based algorithm solves a series of simpler
subproblems with surrogate functions that majorize f (x)
over X . More specifically, starting from an initial point x(0),
it produces a sequence

{
x(k)

}
by the following update rule:

x(k) ∈ arg minx∈X f
(
x,x(k−1)

)
,

where the surrogate majorizing function f
(
x,x(k)

)
satisfies

f
(
x(k),x(k)

)
= f

(
x(k)

)
, ∀x(k) ∈ X ,

f
(
x,x(k)

)
≥ f (x) , ∀x,x(k) ∈ X ,

f
′ (
x(k),x(k);d

)
= f ′

(
x(k);d

)
, ∀d, s.t. x(k) + d ∈ X .

The objective function value is monotonically nonincreas-
ing at each iteration. To use the MM method, the key step is
to find a majorizing function to make the subproblem easy to
solve, which will be discussed in the following subsections.

3.2. Majorization Steps For The Beampattern Matching
Term J (α,x)

In this section, we discuss the majorization steps, i.e., how
to construct a good majorizing function for the beampattern
matching term J (α,x) in (1). First, we have
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J (α,x) =
∑
θ∈Θ ω (θ) |αp (θ)− P (θ,x)|2

= α2
∑
θ∈Θ ω (θ) p2 (θ)− 2α

∑
θ∈Θ ω (θ) p (θ)P (θ,x)

+
∑
θ∈Θ ω (θ) (P (θ,x))

2
,

which is a quadratic function in variable α. Then, it follows
that the minimum of J (α,x) is attained when
α (x) =

∑
θ∈Θ ω (θ) p (θ)P (θ,x) /

∑
θ∈Θ ω (θ) p2 (θ) .

Substitutingα (x) back into J (α,x) and consideringP (θ,x) =

Tr
(
xxHA (θ)

)
= vec

(
xxH

)H
vec (A (θ)), we get

J (x) =
∑
θ∈Θ ω (θ)

(
vec
(
xxH

)H
vec (A (θ))

)2

−
(∑

θ∈Θ ω (θ) p2 (θ)
)−1

(
vec
(
xxH

)H
vec
(∑

θ∈Θ ω (θ)

× p (θ)A (θ)
))2

= vec
(
xxH

)H
HJvec

(
xxH

)
,

where HJ =
∑
θ∈Θ ω (θ) vec (A (θ)) vec (A (θ))

H−
(∑

θ∈Θ

ω (θ) p2 (θ)
)−1

vec
(∑

θ∈Θ ω (θ) p (θ)A (θ)
)

vec
(∑

θ∈Θ

ω (θ) p (θ)A (θ)
)H

, and it is easy to see that J (x) is a
quartic function in x. Next, we introduce a useful lemma.

Lemma 1. Let A ∈ HK and B ∈ HK such that B � A.
At any point x0 ∈ CK , the quadratic function xTAx is ma-
jorized by xHBx+2Re

(
xH (A−B)x0

)
+xH0 (B−A)x0.

Proof. Notice that (x− x0)
H

(B−A) (x− x0) ≥ 0.
Based on Lemma 1, we can choose ψJ,1 ≥ λmax (HJ),

and because ψJ,1I � HJ , at iterate x(t) we have

J (x) ≤ ψJ,1vec
(
xxH

)H
vec
(
xxH

)
+2Re

(
vec
(
xxH

)H
(HJ − ψJ,1I) vec

(
x(t)x(t)H

))
+vec

(
x(t)x(t)H

)H
(ψJ,1I−HJ) vec

(
x(t)x(t)H

)
,

where since vec
(
xxH

)H
vec
(
xxH

)
= ‖x‖42 = c4e, the first

term is just a constant. Then after ignoring the constant terms,
we get the following majorizing function for J (x):

J1

(
x,x(t)

)
' 2Re

(
vec
(
xxH

)H
(HJ − ψJ,1I) vec

(
x(t)x(t)H

))
,

where “'” stands for “equivalence” up to additive constants.
Substituting HJ back into function J1

(
x,x(t)

)
and dropping

the constants, we have

J1

(
x,x(t)

)
' 2xH

(
MJ − ψJ,1x(t)x(t)H

)
x, (4)

where MJ =
∑
θ∈Θ ω (θ)

(
P
(
θ,x(t)

)
− p (θ)α

(
x(t)

))
A (θ).

It is easy to see that after majorization, the majorizing func-
tion J1

(
x,x(t)

)
becomes quadratic in x rather than quartic in

J (x). However, using this function as the objective to solve
is still hard due to the waveform constraint X .2 So we pro-
pose to majorize J1

(
x,x(t)

)
again to simplify the problem

to solve in each iteration. Thus, we can consider choosing
ψJ,2 ≥ λmax (MJ) ≥ λmax

(
MJ − ψJ,1x(t)x(t)H

)
for ma-

jorization, where we can have the following useful property.
2It is a NP-hard unimodular quadratic program even only considering X1.

Lemma 2. [22, 23] Define B =
∑
θ∈Θ ω (θ)

(
P
(
θ,x(t)

)
−

p (θ)α
(
x(t)

))
a∗ (θ)aT (θ) =


b0 b∗1 · · · b∗M−1

b1 b0
. . .

...
...

. . .
. . . b∗1

bM−1 . . . b1 b0

 ,
which is Hermitian Toeplitz, F as a 2M × 2M FFT ma-
trix, and b =

[
b0, b1, . . . , bM−1, 0, b

∗
M−1, , . . . , b

∗
1

]T
. Then,

we have MJ = IN ⊗ B, λmax (MJ) = λmax (B), and

λmax (B) ≤ λµ = 1
2

(
max

1≤i≤M
µ2i + max

1≤i≤M
µ2i−1

)
, where

µ = Fb, which is the discrete Fourier transform for b.

Lemma 2 provides an easy way for the computation of
ψJ,2.Based on Lemma 1 and using ψJ,2 = λµ, the majorizing
function J1

(
x,x(t)

)
can be further majorized as

J1

(
x,x(t)

)
≤ 2ψJ,2x

Hx + 4Re
(
xH
(
MJ − ψJ,1x(t)x(t)H

−ψJ,2I
)
x(t)

)
+ 2x(t)H

(
ψJ,2I−MJ + ψJ,1x

(t)x(t)H
)
x(t),

where since ‖x‖22 = c2e, the first term is a constant. Then by
ignoring the constant terms, the objective becomes a linear
majorizing function at iterate x(t) as follows:

J2

(
x,x(t)

)
' −4Re

(
xHyJ

)
, (5)

where yJ = −
(
MJ − c2eψJ,1I− ψJ,2I

)
x(t).

3.3. Majorization Steps For The Sidelobe Term E (x)

To deal with the sidelobe term E (x) in (2), the majorization
steps are similar to J (x). First, we have

E (x) =
∑
θi,θj∈Θ, i 6=j |Pcc (θi, θj ,x)|2

= vec
(
xxH

)H
HEvec

(
xxH

)
,

where HE =
∑
θi,θj∈Θ, i 6=j vec (A (θi, θj)) vec (A (θi, θj))

H .
Then, based on Lemma 1, by choosing ψE,1 ≥ λmax (HE)
and ψE,2 ≥ λmax

(
ME − ψE,1x(t)x(t)H

)
, we can get the

majorizing functions at iterate x(t) written as follows:

E1

(
x,x(t)

)
' 2xH

(
ME − ψE,1x(t)x(t)H

)
x

≤ E2

(
x,x(t)

)
' −4Re

(
xHyE

)
,

(6)

where ME =
∑
θi,θj∈Θ, i 6=j Pcc

(
θj , θi,x

(t)
)
A (θi, θj) and

yE = −
(
ME − c2eψE,1I− ψE,2I

)
x(t).

3.4. Solving The Majorized Subproblem in MM

By combing the two majorizing functions J2

(
x,x(t)

)
and

E2

(
x,x(t)

)
, the overall majorizing function at iterate x(k)

for the objective f (x) is given as follows:

f (x) ≤ f
(
x,x(t)

)
= J2

(
x,x(t)

)
+ ωccE2

(
x,x(t)

)
' −4Re

(
xHyJ

)
− 4ωccRe

(
xHyE

)
= −Re

(
xHy

)
,
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where y = −4
(
MJ + ωccME − c2e (ψJ,1 + ωccψE,1) I−

(ψJ,2 + ωccψE,2) I)x(t).
Finally, by majorizing the objective function in (3) using

the MM method, the subproblem we need to solve at each
iteration is given as follows:

minx f
(
x,x(t)

)
' −Re

(
xHy

)
s.t. x ∈ X . (7)

For problem (7), as to different interested waveform con-
straints, closed-form optimal solutions x? can be derived,
which are summarized in the following lemma.
Lemma 3. i) For fixed energy constraint (i.e., X = X0),
x? = cey/ ‖y‖2; ii) for constant modulus constraint (i.e.,
X = X1), x? = cde

j arg(y);3 iii) for fixed energy with PAR
constraint (i.e., X = X0 ∩ X2), the solution x? can be found
in [24, Alg. 2]; iv) for constant modulus with similarity con-
straint (i.e., X = X1 ∩ X3), the solution x? can be found in
[25].

3.5. The MM-Based Beampattern Matching Algorithm
Based on the MM method, in order to solve the original prob-
lem (3), we just need to iteratively solve the subproblem (7)
with a closed-form solution update in Lemma 3 at each itera-
tion. The overall algorithm is summarized as follows.

Input: a (θ), p (θ), x(0) and t = 0.
Repeat
1. Compute MJ , ME , ψJ,1, ψE,1, ψJ,2, ψE,2 and y;
2. Update x(t) in a closed-form according to Lemma 3;
3. t = t+ 1;

Until x and f (x) satisfy a termination criterion.
Output: α, x.

4. NUMERICAL SIMULATIONS
The performance of the proposed algorithm for MIMO trans-
mit beampattern matching is evaluated by numerical simula-
tions. A colocated MIMO radar system is considered with
a ULA comprising M = 10 antennas with half-wavelength
spacing between adjacent antennas. Without loss of gener-
ality, the total transmit power is set to c2e = 1. Each trans-
mit pulse has N = 32 samples. The range of angle is Θ =
(−90◦, 90◦) with spacing 1◦ under which the weight ω (θ) =
1 for θ ∈ Θ, and ωcc = 0, which is the same setting as [13].
We consider a desired beampattern with three targets or main-
lobes (K = 3) at θ1 = −40◦, θ2 = 0◦, θ3 = 40◦, and each
width of them is4θ = 20◦. The desired beampattern is

p (θ) =

{
1, θ ∈ [θk −4θ/2, θk +4θ/2] , k = 1, 2,K

0, otherwise.

We compare the convergence property over iterations of
the objective function for the beampattern matching prob-
lem under unimodulus waveform constraint by using the pro-
posed MM-based algorithm (denoted as MM-based algorithm
(prop.)) and the ADMM-based algorithm in [13] (denoted as
ADMM-based algorithm) , which is shown in Fig. 2.

3The operation arg (y) is applied element-wise for y.
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Fig. 2. Convergence comparison for objective function value.

As shown in Fig. 2, the MM-based algorithm can have a
monotonic convergence property. And it can converge within
20 iterations which is faster than the benchmark algorithm.

Then, we also compare the matching performance of the
designed beampatterns in terms of the mean-squared error
(MSE) defined as

MSE (P (θ,x)) = E
[∑

θ∈Θ ω (θ) |αp (θ)− P (θ,x)|2
]
.

In Fig. 3, we show the simulation results for MSE (P (θ,x))
by using different design methods.
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Fig. 3. Transmit beampattern design with 3 targets .
From Fig. 3, we can see that compared to the benchmark,

our proposed algorithm can have a tighter matching perfor-
mance and can obtain a lower MSE. Based on these, the pro-
posed algorithm is validated.

5. CONCLUSIONS
This paper has considered the MIMO transmit beampattern
matching problem. Efficient algorithms have been proposed
based on the MM method. Numerical simulations show that
the proposed algorithms are efficient in solving the beampat-
tern matching problem and can obtain a better performance
compared to the the state-of-art method.
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