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ABSTRACT

A novel computationally efficient method for jointly design-
ing the space-(slow) time (SST) transmission with unimodular
waveforms and receive adaptive filter is developed for different
radar configurations. The range sidelobe effect and Doppler
characteristics are considered. In particular, we develop a
novel approach for jointly synthesizing unimodular SST wave-
forms and minimum variance distortionless response receive
adaptive filter for two cases of known Doppler information
and presence of uncertainties on clutter bins. Corresponding
non-convex optimization problems are formulated and effi-
cient algorithms are derived. The main ideas of the algorithm
developments are to decouple composite objective function of
the formulated problems, generate minorizing surrogates, and
then solve the joint design problem iteratively, but in closed-
form for each iteration by means of minorization-maximization
technique. The proposed algorithms demonstrate good perfor-
mance and have fast convergence speed and low complexity.

Index Terms— Adaptive filter, joint waveform design,
minorization-maximization, space-(slow) time, radar.

1. INTRODUCTION

Waveform design has been the research field of significant
interest over several decades [1]–[4]. Many past works focus
on designing fast-time waveform(s) to achieve various desir-
able properties [5]–[9]. These works improve the waveform
quality when the receiver is fixed as the matched filter. How-
ever, in harsh environments involving heterogeneous clutter
with Doppler uncertainties and/or active jamming, the receiver
should be flexibly adaptive, and therefore, joint transmission
and receive filter design (JTRFD) becomes necessary.

Recent works on JTRFD [10]–[16] can be divided into
two categories. The first category concentrates on designing
fast-time waveform transmission and receive filter with partic-
ular constraints on waveform characteristics, which essentially
trade off the signal-to-noise ratio (SNR) for signal-to-clutter-
plus-noise ratio [10]–[12]. The methods therein normally do
not consider Doppler information processing. Differing from
the first category, the methods in the second category focus on
synthesizing slow-time waveforms (for inter-pulse coding) at
transmission while jointly enforcing the receive adaptive filter
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[13]–[16]. As a result, they have the potential of coping with
Doppler related issues, such as uncertainty, and therefore, can
offer enhanced resolution, superior detection, etc. The latter
newly emerged trend motivates us to further investigate the
joint design with considerations on the range sidelobe effect of
fast-time waveforms [17] and the waveform diversity [18] in
the multi-input multi-output (MIMO) radar context [19], even
with difficult constraints. It also motivates us to use space-
time adaptive processing (STAP) technique [20], [21], so that
the signal-to-interference-plus-noise ratio (SINR) performance
can be improved through multi-dimension adaptive filter.

In this paper, we address the joint space-(slow) time (SST)
transmission and receive adaptive filter design problem. We
present a generic signal model suitable for different radar
configurations while considering the intra-pulse compression
(or range sidelobe) effect and Doppler characteristics. The
SST waveforms are designed to have unit modulus by max-
imizing the output SINR, with which a minimum variance
distortionless response (MVDR) STAP filter is associated. We
devise an efficient approach based on simple iterative proce-
dures, and find closed-form solutions to the sub-problems via
minorization-maximization technique [22]. Our strategy is to
minorize the composite objective function by properly design-
ing surrogates defined in terms of quadratic form. Both cases
of known Doppler information and uncertainties on clutter
bins are studied. The solution to the latter case serves as a
generic form for the former. Corresponding computationally
efficient algorithms with good performance are proposed.

Notations: We use bold upper case, bold lower case, and
italic letter to denote matrices, column vectors, and scalars, re-
spectively. Notations (·)T, (·)H, ⊗, �, D(·), vec(·), E{·},
|·| and ‖·‖ are respectively the transpose, conjugate trans-
pose, Kronecker product, Hadamard product, diagonaliza-
tion, column-wise vectorization, expectation, modulus, and
Euclidean norm operators. In addition, C denotes the complex
field, and 1M stands for a length-M vector of all ones.

2. PROBLEM FORMULATION

Consider an airborne colocated MIMO radar equipped with
M transmit and N receive elements. At each transmit element,
a burst of L pulses encoded by an independent slow-time
waveform, denoted by φm , [φm,1, . . . , φm,L]

T ∈ CL×1

for the mth element, is launched within one radar coherent
processing interval (CPI). An independent fast-time waveform
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of length P , denoted by sm ∈ CP×1 for the mth antenna, is
repeatedly used for all intra-pulse modulations. We denote
the SST and space-(fast) time (SFT) waveform matrices for
transmission as Φ , [φ1, . . . ,φM ]

T ∈ CM×L and S ,

[s1, . . . , sM ]
T ∈ CM×P , respectively, and define R

(p)
S ,

SJpS
H ∈ CM×M as the waveform covariance matrix (for

pulse compression) at the time lag p ( 0 ≤ p ≤ P − 1 ), with
Jp ∈ CP×P being the pth lower shift matrix whose entries are
ones on the pth off-diagonal (p = 0 for the main diagonal) and
zeros elsewhere.

At the receive end, after intra-pulse compression, i.e.,
matched filtering to S at time lag p (p = 0 for the target),
and stacking the data into a vector, the received target vector
yt ∈ CMNL×1 with a normalized Doppler frequency ft for
the target located at θt can be expressed as

yt = αtaR(θt)⊗D(d(ft))⊗
((

R
(0)
S

)T
D(aT(θt))

)
φ (1)

where αt, aT(θt), aR(θt), and d(ft) are the complex reflec-
tion coefficient, the transmit, receive, and Doppler steering
vectors for the target, respectively, and φ , vec(Φ) ∈ CML×1

is the vectorized version of Φ.
The observed clutter is a superposition of echoes from

different uncorrelated scatters. Assuming that Nr ( Nr ≤ L
) range rings interfere with the range-azimuth bin of interest
where the target locates, and each ring consists of Nc discrete
azimuth bins, the received clutter vector yc ∈ CMNL×1 can
be expressed as

yc =

Nr−1∑
i′=0

Nc∑
i=1

ξii′aR(θii′)⊗ (Ji′D(d(fii′)))

⊗
((

R
(p)
S

)T
D(aT(θii′))

)
φ (2)

where θii′ , fii′ , and ξii′ are respectively the azimuth angle, nor-
malized Doppler frequency, and complex reflection coefficient
with zero mean, for the (i′, i)th range-azimuth bin.

The overall receive data vector y can be expressed as
y = yt + yc + yj+n (3)

where yj+n ∈ CMNL×1 is the jamming plus noise vec-
tor which is assumed to be independent of the target and
clutter components, and its covariance matrix is Rj+n ,
E
{
yj+nyH

j+n

}
. To simplify the notations, yt can be further

expressed as yt = αtTtφ, and yc can be expressed as

yc =

Nr−1∑
i′=0

Nc∑
i=1

ξii′T
(p)
ii′ φ =

Nr−1∑
i′=0

Nc∑
i=1

ξii′T̃
(p)
ii′

(
d̃(fii′)� φ

)
(4)

where d̃(fii′) , d(fii′) ⊗ 1M , Tt , aR(θt) ⊗D(d(ft)) ⊗((
R

(0)
S

)T
D(aT(θt))

)
, T

(p)
ii′ , aR(θii′) ⊗ (Ji′D(d(fii′))) ⊗((

R
(p)
S

)T
D(aT(θii′))

)
, and T̃

(p)
ii′ , aR(θii′)⊗Ji′⊗

((
R

(p)
S

)T
D(aT(θii′))

)
.

Using (4), the clutter covariance matrix Rc , E
{
ycy

H
c

}
for the case of known Doppler on clutter bins (i.e., fii′ is fixed),
denoted in this case as RI

c, can be expressed as

RI
c =

Nr−1∑
i′=0

Nc∑
i=1

σ2
ii′T

(p)
ii′ φφ

H
(
T

(p)
ii′

)H
(5)

with σ2
ii′ , E{|ξii′ |2}. When fii′ is unknown, but rather

distributed with a known probability density function (PDF) in
the uncertainty interval [f̄ii′ − εii′/2, f̄ii′ + εii′/2] with mean
f̄ii′ and bounding parameter εii′ , the clutter covariance matrix
Rc, denoted in this case as RII

c , can be expressed as

RII
c =

Nr−1∑
i′=0

Nc∑
i=1

σ2
ii′T̃

(p)
ii′

(
φφH

)
�
(
Υii′ ⊗ 1M1T

M

)(
T̃

(p)
ii′

)H
(6)

where we used (4), and Υii′ ∈ CL×L is a Hermitian matrix
determined by the PDF of fii′ (see [13] for the example of
uniform distribution).

Finally, the STAP filter with the weight vector w ∈
CMNL×1 is applied to the received data vector y. Hence, the
SINR at the output of the filter can be expressed as

ζ =
|αt|2 · |wHTtφ|2

wH(Rc + Rj+n)w
. (7)

The problem considered here is the joint design of SST
waveform(s) and receive adaptive filter under the constraint
that the waveforms have constant modulus. The design objec-
tive is to maximize SINR in (7). Under the condition that the
SFT waveform matrix S is known, the above joint design can
be written as the following optimization problem

max
φ,w

ζ

s.t. |φ(n)| = 1, n = 1, . . . ,ML (8)
where the constraints ensure the constant-modulus property.

3. JOINT SST WAVEFORM AND RECEIVE
ADAPTIVE FILTER DESIGN

Using (7), for given φ, the solution of the optimization prob-
lem (8) with respect to w can be easily found, and it obeys the
following MVDR expression

wopt(φ) =
(Rc + Rj+n)

−1
Ttφ

φHTH
t (Rc + Rj+n)

−1
Ttφ

. (9)

Inserting (9) into (7), the SINR metric ζ can be rewritten as
ζ = |αt|2 · φHTH

t (Rc + Rj+n)
−1

Ttφ. (10)
Therefore, the optimization problem (8) with respect to φ only
and for give w can be written as

max
φ

φHTH
t (Rc + Rj+n)

−1
Ttφ

s.t. |φ(n)| = 1, n = 1, . . . ,ML. (11)
The objective in (11) is a composite function of φ and Rc ∈{
RI

c, RII
c

}
, where Rc is also a function of φ. Before pro-

ceeding with solving (11), we present the following result.

Lemma 1. The objective in (11) is minorized by

g1
(
φ,φ(k)

)
=
(
φ(k)

)H
Ψ
(
φ(k)

)
φ(k) + 2<

{(
φ(k)

)H
×
(
Ψ
(
φ(k)

))H(
φ− φ(k)

)}
−
(
φ(k)

)H
TH

t

(
Ω
(
φ(k)

))H
×
(
Rc(φ)−Rc

(
φ(k)

))
Ω
(
φ(k)

)
Ttφ

(k) (12)
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where φ(k) is the SST waveform vector obtained at the kth
iteration, and Ω

(
φ(k)

)
∈ CMNL×MNL and Ψ

(
φ(k)

)
∈

CNL×NL are both functions of φ, defined as Ω
(
φ(k)

)
,(

Rc

(
φ(k)

)
+ Rj+n

)−1
and Ψ

(
φ(k)

)
, TH

t Ω
(
φ(k)

)
Tt.

Proof. Using Taylor’s theorem and considering the first order
expansion of the objective in (11), it can be straightforwardly
proved (but after some derivations that we omit due to space
limitation) that (12) minorizes the objective in (11).

Let us consider first the case when Rc is given by (5), i.e.,
Rc = RI

c. Using Lemma 1 and inserting (5) into (12), after
some derivations, we can rewrite the minorizing function as

gI1
(
φ,φ(k)

)
=
(
φ(k)

)H
ΨI
(
φ(k)

)
φ(k) + 2<

{(
φ(k)

)H
×
(
ΨI
(
φ(k)

))H(
φ− φ(k)

)}
− φHEI

c

(
φ(k)

)
φ +

(
φ(k)

)H
×EI

c

(
φ(k)

)
φ(k) (13)

where ΩI
(
φ(k)

)
,
(
RI

c(φ
(k)) + Rj+n

)−1
, ΨI

(
φ(k)

)
,

TH
t ΩI

(
φ(k)

)
Tt, and

EI
c(φ

(k)) ,
Nr−1∑
i′=0

Nc∑
i=1

σ2
ii′
(
T

(p)
ii′

)H
ΩI
(
φ(k)

)
×Ttφ

(k)
(
φ(k)

)H
TH

t

(
ΩI
(
φ(k)

))H
T

(p)
ii′ . (14)

Note that the third term in (13) takes a quadratic form with
respect to φ, to which we can apply a proper minorization
function once more.

Before proceeding with the further minorization of (13),
we present the following lemma.

Lemma 2. The quadratic function f(φ) = −φHEI
c(φ

(k))φ
is minorized by the following function

g̃
(
φ,φ(k)

)
= − 1

2φ
HG(k)φ−

(
φ(k)

)H( 1
2G(k) −EI

c(φ
(k))
)

× φ(k) − 2<
{
φH
(
EI

c(φ
(k))− 1

2G(k)
)
φ(k)

}
(15)

if G(k) � EI
c(φ

(k)) is satisfied.

Proof. The result is equivalent to majorization of −f(φ), and
it is proved in this form in [23].

Applying Lemma 2 to (13), after some derivations, the
minorization function gI1

(
φ,φ(k)

)
can be rewritten as

gI2
(
φ,φ(k)

)
= − 1

2φ
HG(k)φ− 2<

{
φH
(
EI

c(φ
(k))− 1

2G(k)

−ΨI
(
φ(k)

))
φ(k)

}
+
(
φ(k)

)H(
2EI

c

(
φ(k)

)
−ΨI

(
φ(k)

)
− 1

2G(k)
)
φ(k). (16)

Choosing G(k) = λ(k)IML, where λ(k) is a properly se-
lected magnitude (e.g., the largest eigenvalue of EI

c(φ
(k)))

such that G(k) � EI
c(φ

(k)). It is straightforward to see that
the first and third terms in (16) are constant, and therefore,

immaterial for optimization. Ignoring these terms, the mi-
norization problem for (11) can be written as

max
φ

−<
{
φH
(
EI

c(φ
(k))− 1

2G(k) −ΨI
(
φ(k)

))
φ(k)

}
s.t. |φ(n)| = 1, n = 1, . . . ,ML. (17)

Using the constraint that φ has constant modulus and defining
τ
(k)
I ,

(
EI

c(φ
(k)) − 1

2G(k) −ΨI
(
φ(k)

))
φ(k), the problem

(17) can be equivalently written as
min
φ

∥∥φ− τ
(k)
I

∥∥ s.t. |φ(n)| = 1, n = 1, . . . ,ML (18)

which can be solved in closed-form as
φ(n) = exp

{
j · arg

(
τ
(k)
I (n)

)}
, n = 1, . . . ,ML. (19)

For the case when Rc = RII
c , i.e., Rc is given by (6),

the additional difficulty is that we need to deal with the

Hadamard product. Let Υii′ =
∑K(ii′)

k=1 λ
(ii′)
k q

(ii′)
k

(
q
(ii′)
k

)H
=
∑Kii′

k=1 u
(ii′)
k

(
u
(ii′)
k

)H
be the eigen decomposition of the

matrix Υii′ in (6), with K(ii′) being the rank of Υii′ , λ
(ii′)
k

(real-valued) and q
(ii′)
k being the kth eigenvalue and eigenvec-

tor, respectively, and u
(ii′)
k ,

(
λ
(ii′)
k

)1/2
q
(ii′)
k ∈ CL×1. Then

RII
c can be expressed as

RII
c =

Nr−1∑
i′=0

Nc∑
i=1

Kii′∑
k=1

σ2
ii′T̃

(p)
ii′ D

(ii′)
k φφH

(
D

(ii′)
k

)H(
T̃

(p)
ii′

)H
(20)

where D
(ii′)
k , D

(
u
(ii′)
k ⊗ 1M

)
∈ CML×ML is diagonal.

Applying the same minorization strategies as in the previ-
ous case, we obtain the corresponding minorization functions,
denoted here by gII1

(
φ,φ(k)

)
and gII2

(
φ,φ(k)

)
, by replacing

matrices ΩI
(
φ(k)

)
, ΨI

(
φ(k)

)
, and EI

c(φ
(k)) in (13) and (16)

with ΩII
(
φ(k)

)
,
(
RII

c (φ(k)) + Rj+n

)−1
, ΨII

(
φ(k)

)
,

TH
t ΩII

(
φ(k)

)
Tt, and

EII
c (φ(k)) ,

Nr−1∑
i′=0

Nc∑
i=1

Kii′∑
k=1

σ2
ii′
(
D

(ii′)
k

)H(
T

(p)
ii′

)H
ΩII
(
φ(k)

)
×Ttφ

(k)
(
φ(k)

)H
TH

t

(
ΩII
(
φ(k)

))H
T

(p)
ii′ D

(ii′)
k . (21)

Then the minorization problem for (11) can be written as
max
φ

−<
{
φH
(
EII

c (φ(k))− 1
2G(k) −ΨII

(
φ(k)

))
φ(k)

}
s.t. |φ(n)| = 1, n = 1, . . . ,ML (22)

and solved in closed-form as
φ(n) = exp

{
j · arg

(
τ
(k)
II (n)

)}
, n = 1, . . . ,ML (23)

where τ
(k)
II ,

(
EII

c (φ(k)) − 1
2G(k) − ΨII

(
φ(k)

))
φ(k) and

G(k) is chosen as in the routine used in the previous case.
Note that the solution (23) boils down to solution (19), if
u
(ii′)
k = d(fii′) and K(ii′) = 1, ∀i, i′.

Finally, the algorithm for joint SST waveform and receive
filter design is summarized in Algorithm 1. It can be ac-
celerated using, for example, the squared iterative method
(SQUAREM) of [24], the backtracking line search method
(BLSM) [25], etc. We omit the corresponding convergence
analyses for our proposed algorithm with accelerations here
because of space limitation.
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Algorithm 1 Joint Design Algorithm

1: Initialization: φ(0); mod ∈ {I, II}
2: repeat procedure with respect to φ(k)

3: Calculate Ωmod
(
φ(k)

)
, Ψmod

(
φ(k)

)
, Emod

c

(
φ(k)

)
4: Construct G(k) via Emod

c

(
φ(k)

)
5: τ

(k)
mod ,

(
Emod

c (φ(k))− 1
2G(k)−Ψmod

(
φ(k)

))
φ(k)

6: φ(n) = exp
{
j · arg

(
τ
(k)
mod(n)

)}
, n = 1, . . . ,ML

7: k ← k + 1
8: until convergence
9: Calculate wopt, and φopt = φ(k+1)

4. SIMULATION RESULTS

We evaluate the performance of Algorithm 1 for both modes.
The radar platform is set to have M = 4 transmit and N =
3 receive antenna elements half-wavelength spaced between
each other, with moving velocity of 125 m/s. The carrier
wavelength is 0.25 m, and L = 20 pulses are emitted in one
CPI with pulse repetition frequency of 500 Hz. The target is
located at θt = 10◦ with Doppler ft = 0.13, and the SNR
is 10 dB. Three acceleration schemes: i) SQUAREM [24];
ii) BLSM [25]; and iii) combination of i) and ii) are used.
We choose the absolute SINR difference between the current
and previous iterations normalized by SNR as the stopping
criterion, and set the tolerance to 10−8. The SFT waveforms
are generated via the ISLNew method in [23], and the SST
waveforms are initialized by sequences with random phases.

We first consider the scenario of homogeneous environ-
ment where Nr = 10 range rings interfere with the range-
azimuth bin of interest, with each separated into Nc = 181
azimuth bins. The Doppler information of clutter bins is known
(determined by their relative radial velocities), and the clutter-
to-noise ratio (CNR) for each bin is set to 40 dB. Mode I
of Algorithm 1 is exploited. It can be seen from Fig. 1 that
our proposed algorithm shows good SINR behaviour in terms
of the convergence speed. Both the original algorithm and
its accelerations i), ii), and iii) demonstrate sharp SINR im-
provements for few iterations, starting from an initial SINR of
4.74 dB. The corresponding improvements after the first 25 it-
erations have reached 3.27 dB, 3.77 dB, 4.17 dB, and 4.48 dB
(with completion rates 72%, 82%, 91%, and 98% compared
to the maximum achievable SINR), respectively. Among the
results shown, the smallest number (around 45) of consumed
iterations after convergence to tolerance is achieved by accel-
eration iii), while the others (original and accelerations i) and
ii)) consume about 510, 225, 85 iterations, respectively.

We then consider the scenario with discrete heterogeneous
environment with Doppler uncertainties on clutter bins. The
corresponding parameters are: Nr = 10,Nc = 3, CNR=50 dB
(for each discrete bin). The spatial directions of the three
clutter sources at each ring are randomly distributed within
the sectors [−50◦,−30◦], [−20◦, 10◦], and [25◦, 35◦], respec-

0 50 100 150 200 250

Number of iterations

5

6

7

8

9

S
IN

R
 (

d
B

)

Original algorithm: Mode I

Algorithm: Mode I, acceleration I

Algorithm: Mode I, acceleration II

Algorithm: Mode I, acceleration IIII

Fig. 1. SINR v.s. iterations: Example 1, cut at 270th iteration.

0 50 100 150 200

Number of iterations

5

6

7

8

9

S
IN

R
 (

d
B

)

Original algorithm: Mode II

Algorithm: Mode II, acceleration I

Algorithm: Mode II, acceleration II

Algorithm: Mode II, acceleration III

Fig. 2. SINR v.s. iterations: Example 2, cut at 220th iteration.

tively. The Doppler uncertainty parameters are: f̄ii′ = 0,
εii′ = 0.35, ∀i′ ∈ {0, . . . , 9}, i ∈ {1, 2, 3}, and Υii′ is deter-
mined by the PDF of uniform distribution (see [13]). Fig. 2
shows the corresponding SINR performance versus number of
iterations consumed. It can be seen that the obtained SINRs
for this scenario verify the effectiveness of our proposed al-
gorithm. With the aid of accelerations, the obtained SINR
levels are significantly improved after consuming around 10
iterations (above 8 dB), and the number of iterations has been
reduced at most to about 70 (by acceleration III).

5. CONCLUSION

We have developed a novel approach for jointly synthesizing
unimodular SST waveforms and MVDR receive STAP filter
with considerations on the range sidelobe effect and Doppler
characteristics. Two cases of known Doppler and presence of
uncertainties on clutter bins have been considered. We have
formulated the corresponding non-convex optimization prob-
lems, and have developed efficient algorithms for addressing
them through manipulating the composite objective of the for-
mulated problems and designing minorizing surrogates. The
resulting minorized problems can be solved in closed-form
via minorization-maximization technique, and the proposed
algorithms have low complexity, fast convergence speed, and
demonstrate good performance through simulations.
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