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ABSTRACT
The atomic norm minimization (ANM) has been successful-
ly incorporated into the two-dimensional (2-D) direction-of-
arrival (DOA) estimation problem for super-resolution. How-
ever, its computational workload might be unaffordable when
the number of snapshots is large. In this paper, we propose
two gridless methods for 2-D DOA estimation with L-shaped
array based on the atomic norm to improve the computation-
al efficiency. Firstly, by exploiting the cross-covariance ma-
trix an ANM-based model has been proposed. We then prove
that this model can be efficiently solved as a semi-definite
programming (SDP). Secondly, a modified model has been
presented to improve the estimation accuracy. It is shown
that our proposed methods can be applied to both uniform
and sparse L-shaped arrays and do not require any knowledge
of the number of sources. Furthermore, since our methods
greatly reduce the model size as compared to the convention-
al ANM method, and thus are much more efficient. Simula-
tions results are provided to demonstrate the advantage of our
methods.

Index Terms— 2-D DOA estimation, L-shaped array,
atomic norm, cross-covariance matrix

1. INTRODUCTION

The problem of 2-dimensional (2-D) direction-of-arrival
(DOA) estimation plays a fundamental role in array signal
processing and is encountered in a variety of applications.
These applications include, for instance, using an airborne
or a spaceborne array to observe ground-based sources, or,
estimating the channel of the massive multiple-input and
multiple-output (MIMO) systems in wireless communica-
tions. In 2-D DOA estimation, the azimuth and elevation
angles of the incident sources are jointly estimated by using
planar arrays, which can be roughly classified into three cat-
egories: the rectangular arrays [1], the L/T-shaped arrays [2]
and the cross arrays. The selection of the array geometry
largely affects the estimation accuracy as well as the com-
putational efficiency and has been extensively investigated
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in literature [2, 3]. In particular, the rectangular array can
be regarded as the 2-D extension of the uniform linear array
(ULA) and hence several computationally efficient methods
have been proposed for 2-D DOA estimation in URAs [1, 4],
among which the 2-D ESPRIT [4] is an easy-to-implement
algorithm due to the shift invariance property of the array
output. However, it is usually unapplicable to the L/T-shaped
or cross arrays. The L-shaped array has the best estimation
performance due to its larger array aperture as defined by the
largest distance among the sensors [5]. Hence the L-shaped
array has been often employed in dealing with 2-D DOA
estimation problems and many methods have been proposed
by exploring the structural information of the array geometry.
In particular, the L-shaped array has an advantage that the
cross-correlation matrix (CCM) between the received data
of the two orthogonal ULAs can eliminate additive noises,
based on which several methods have been proposed [2, 6, 7].
However, most of these methods have utilized the L-shaped
array consisting of two ULAs, and hence they may suffer
from the difficulty when some sensors are ”missing”. In ad-
dition, most of these methods rely on prior knowledge on the
number of sources, which is actually unavailable in practice.

Recently, with the development of atomic norm theory,
the atomic norm minimization (ANM) approach has been
incorporated into the 2-D DOA estimation (a.k.a. the line
spectral estimation) for super-resolution [8–10]. In partic-
ular, the ANM solves a semi-definite programming (SDP)
problem by exploiting the structure of the two-level Toeplitz
matrix. Compared to the conventional methods, the ANM
method is immune to the correlation between the impinged
source signals as well as the number of sources. Further-
more, it is shown that the angle ambiguity problem can be
also solved [9], [11]. However, since ANM requires to solve
an SDP problem, it incurs a high computational complexity,
especially in the multi-snapshot case, which becomes near
intractable for large-scale antennas systems. To deal with this
problem, some latest studies decouple the two-level Toeplitz
matrix into two Toeplitz matrices in one dimension [12, 13].
In this way, the new SDP formulation has a much reduced
problem size and hence the computational efficiency can be
improved. Nevertheless, this method can only handle single
snapshot case and the extension to the multi-snapshot case is
not straightforward.
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Fig. 1. Array geometry of the L-shaped array.

To the best of our knowledge, most of the existing ANM-
based 2-D DOA estimation methods are proposed based on
the uniform or sparse rectangular array. Although the ANM-
based methods are applicable to the L-shaped array by re-
garding it as a special case of the sparse rectangular array,
the characteristics of the L-shaped array are not fully exploit-
ed in these methods to improve the estimation performance.
For instance, the coprime linear array can be a great alter-
native for each ULA in the L-shaped array [14–18]. In this
paper, we propose an ANM-based model for L-shaped ar-
ray by employing the CCM and prove that the model can be
efficiently solved as an SDP. We then modify the constraint
of the problem to improve its estimation performance. The
proposed methods are computationally much more efficient
than the conventional ANM method and can be applied to s-
parse L-shaped array, which is usually difficult for many other
methods [2, 6, 7]. Simulations are carried out to validate the
effectiveness of our methods.

2. SIGNAL MODEL

Suppose K far-field narrowband sources impinge onto an L-
shaped array consisting of two ULAs with half-wavelength
inter-element spacing as illustrated in Fig. 1. The ULAs a-
long the x- and y-directions consist of Nx and Ny sensors,
respectively. Note that the sensor at the origin is shared by
the two ULAs, hence the total number of sensors in the L-
shaped array is Nx +Ny − 1. In Fig. 1, the θk and ϕk denote
the elevation and azimuth angles, respectively, and αk and βk

denote the electrical angles in x- and y-directions of the k-
th signal, respectively. From basic geometric knowledge, the
electrical angles have the following relations with respect to
elevation and azimuth angles,

ϕk = tan−1

(
cos(βk)

cos(αk)

)
θk = sin−1

(√
cos2(αk) + cos2(βk)

)
.

(1)

Hence, when the electrical angles are retrieved, the elevation
and azimuth angles can be uniquely determined by (1).

When L snapshots are collected, the array output can be

formulated as,
X = AxS + Vx, (2)

Y = AyS + Vy, (3)

where X and Y are the array outputs along x- and y-
directions, respectively, Ax = [ax(α1), · · · ,ax(αK)] and
Ay = [ay(β1), · · · ,ay(βK)] are the manifold of the array
along x- and y-directions, respectively, S denotes the wave-
form of the sources, and Vx and Vy are the additive noises
received by the arrays along x- and y-directions, respectively.

The goal of 2-D DOA estimation is to estimate αk and
βk given the array output X and Y . In the following, we
will exploit the structural information of the L-shaped array
and provide a super-resolution approach based on the atomic
norm theory.

3. THE PROPOSED METHOD

From (2) and (3), we can easily obtain the CCM of the array
output as,

R = E[Y XH ] = AyPAH
x , (4)

where P , E[SSH ] = diag(p) denotes the covariance ma-
trix of the sources with p = [p1, · · · , pK ]T . Then, by vector-
izing R column by column, we can have,

r = vec(R) =
K∑

k=1

pkbk, (5)

where bk = a∗
x(αk) ⊗ ay(βk). Inspired by the atomic norm

theory, we formally construct the following atom set,

A =
{
bk = a∗

x(αk)⊗ay(βk), αk, βk ∈ [−90◦, 90◦)
}
. (6)

Then the 2-D DOA estimation can be accomplished by mini-
mizing the following atomic norm,

∥r∥A = inf
pk,αk,βk

{∑
k

pk : r =
∑
k

pkbk, pk ∈ R+, bk ∈ A
}
.

(7)
Although the atomic norm (7) is convex, it is a semi-infinite
program with an infinite number of variables. To practically
solve (7), inspired by Theorem 3 in [19], an SDP formulation
of ∥r∥A is provided in the following theorem.1

Theorem 1 ∥r∥A defined in (7) equals the optimal value of
the following SDP:

min
T,t

1

2
√
NxNy

(t+ tr[T])

s.t.
[
t rH

r T

]
≥ 0,

(8)

where T is a two-level Toeplitz matrix.

Proof: We first introduce the following lemma.

Lemma 1 ( [20]) Given R = BBH ≥ 0, it holds that
rHR−1r = min ∥p∥22, subject to Bp = r.

1Although a similar result is provided in [10], our proof is carried out
from a different perspective and is simpler.
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It follows from the constraint in (8) that T ≥ 0 and t ≥
rHT−1r. So, it suffices to show that

∥r∥A = min
T

1

2
√

NxNy

(tr[T]+rHT−1r) s.t. T ≥ 0. (9)

Let T = BCBH = [BC
1
2 ][BC

1
2 ]H be any feasible Van-

dermonde decomposition, where B = [. . . , bk, . . . ] and
C = diag(. . . , ck, . . . ) with ck > 0. Hence we have
tr[T] = NxNy

∑
ck. According to Lemma 1, we have

that

rHT−1r = min
v

∥v∥22 s.t. r = BC
1
2v

= min
p

∥∥C− 1
2p

∥∥2
2

s.t. r = Bp

= min
p

pHC−1p s.t. r = Bp.

(10)

Based on (10), we have,

min
T

1

2
√
NxNy

(tr[T] + rHT−1r)

= min
Bp=r,

p,B,cn>0

√
NxNy

2

∑
n

cn +
1

2
√
NxNy

pHC−1p

= min
Bp=r,

p,B,cn>0

√
NxNy

2

∑
n

cn +
1

2
√
NxNy

∑
n

p2nc
−1
n

= min
B,p

∑
n

pn s.t. Bp = r

= ∥r∥A.

(11)

Hence, Theorem 1 can be concluded. �
Note that the CCM is usually obtained with limited snap-

shots as,

R̂ =
1

L
Y XH , (12)

where R̂ is error-contaminated due to finite snapshots. We
denote the error component as

E = R̂−R (13)

where E consists of signal-signal and signal-noise cross cor-
relation terms which are non-zero due to finite snapshot ef-
fect. By taking this error component into consideration, we
propose the following ANM approach,

min
T,t,r

1

2
√

NxNy

(t+ tr[T])

s.t.
[
t rH

r T

]
≥ 0,

∥∥r̂ − r
∥∥
2
≤ η,

(14)

where r̂ = vec(R̂) and η ≥ ∥E∥F denotes the upper bound
of the error energy.

Note that the DOAs of interest are actually encoded in
the two-level Toeplitz matrix T. As long as T is determined,
the DOAs can be retrieved and automatically paired by using
the generalized Vandermonde decomposition theorem given
in [9].

Remark 1 Compared to the ANM method in [9] and [10],
which is time-consuming in the multiple snapshot case, our
proposed method transforms the multiple snapshot model in-
to the single snapshot model and the computational burden
is greatly reduced as will be seen in simulations. Since we
employ the CCM to eliminate the additive noise, the proposed
method is named as cross-covariance ANM (CC-ANM).

We now consider the sparse L-shaped array where some
sensors of the two ULAs fail to function or are missing. Let
us further define the sensor index sets of the two linear arrays
as Ωx and Ωy , respectively.2 Let Γx be a selection matrix
with respect to Ωx such that the m-th row of Γx contains al-
l zeros but a single 1 at the Ωxm -th position where Ωxm is
the m-th element in Ωx. Similarly, we define Γy . By defi-
nition, the sample CCM can be denoted as R̂Ω = ΓyR̂ΓH

x

and its vectorized version is r̂Ω = vec(R̂Ω) = (ΓT
x ⊗ Γy)r̂.

Following the same manner as formulating problem (14), we
propose the following SDP for the sparse L-shaped array,

min
T,t,r

1

2
√
NxNy

(t+ tr[T])

s.t.
[
t rH

r T

]
≥ 0,

∥∥r̂Ω − rΩ
∥∥
2
≤ η,

(15)

where rΩ = (ΓT
x ⊗ Γy)r.

Remark 2 From problem (15) it can be seen that, our pro-
posed method is still applicable even if some of the sensors
in ULAs fail and hence is more reliable for practical appli-
cations. Furthermore, based on the atomic norm theory, CC-
ANM method does not require any knowledge of the number
of sources.

4. THE MODIFIED CC-ANM

Although problem (14) or (15) can be efficiently solved by us-
ing CVX in a polynomial time, the appropriate value of user-
defined parameter η is usually hard to obtain. In this section,
we propose a modified CC-ANM where the parameter can be
easily determined. Note that rΩ = r when no sensor fails,
hence model (14) can be regarded as a special case of model
(15). Without loss of generality, we use model (15) in this
section and give the following theorem.

Theorem 2 Suppose that the error component is given as
εΩ = r̂Ω − rΩ, RΩx and RΩy are the covariance matrix
of the linear arrays along x- and y-directions, respectively.
Then, εΩ obeys the following asymptotic Gaussian distribu-
tion,

εΩ ∼ AsN(0,Q), (16)

where Q = 1
LR

T
Ωx

⊗RΩy .

Proof: Inspired by [23], we first denote the i-th subvector
(with length of My) of r̂Ω as 3

[r̂Ω]i =
1

L

L∑
t=1

y(t)x∗
i (t). (17)

2Detailed description of the sensor index set can be found in [21, 22].
3Mx, My denote the number of sensors along x- and y-directions, re-

spectively.
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Then we can establish the following relation,

E
[
[r̂Ω]i[r̂Ω]

H
j

]
=

1

L2

L∑
t=1

L∑
s=1

E[y(t)x∗
i (t)y(s)

∗xj(s)]

= [rΩ]i[rΩ]
H
j +

1

L
[RΩx ]jiRΩy ,

(18)

from which it can be concluded that,

Q = E[(r̂Ω − rΩ)(r̂Ω − rΩ)
H ]

=
1

L
RT

Ωx
⊗RΩy .

(19)

�
According to Theorem 2, we can show that Q− 1

2 εΩ sat-
isfies the standard Gaussian distribution, i.e., AsN(0, I), and
its ℓ2-norm satisfies the chi-square distribution as,∥∥Q− 1

2 εΩ
∥∥2
2
∼ Asχ2(MxMy). (20)

Based on the property of the chi-square distribution, the fol-
lowing inequality holds with probability 1− κ,∥∥Q− 1

2 εΩ
∥∥
2
≤ β, (21)

where κ is usually chosen to be a small value (e.g., 10−4) and
β can be determined by using the Matlab routine chi2inv(1−
κ,MxMy). Equation (21) can be regarded as the weighted
least squares criterion and is a large-snapshot approximation
to the maximum likelihood criterion [23]. As a result, we
have the following modified SDP,

min
T,t,r

1

2
√
NxNy

(t+ tr[T])

s.t.
[
t rH

r T

]
≥ 0,

∥∥Q− 1
2 εΩ

∥∥
2
≤ β.

(22)

After obtaining T, the DOAs can be retrieved accordingly.
We name the proposed method as modified CC-ANM (MCC-
ANM).

Before closing this section, we give a complexity compar-
ison between our method and the traditional ANM method.
In particular, the computational complexity of the tradition-
al ANM method is O(n2

1n
2.5
2 ), where n1 = L2 + P and

n2 = L+MxMy with P = 2MxMy −Mx −My + 1 being
the number of variables in T. While in our methods, the com-
putational complexity can be greatly reduced by noting that
n1 = 1 + P and n2 = 1 + MxMy . The superiority of our
method will be further shown in the next section.

5. NUMERICAL RESULTS

In this section, two L-shaped arrays are considered for sim-
ulations: one consisting of two 5-element ULAs (Array 1)
and the other consisting of two sparse linear arrays with
Ωx = Ωy = {1, 2, 3, 5} (Array 2). We compare our pro-
posed methods with ANM [9], which is the state-of-the-art
gridless method for 2-D DOA estimation. All the compared
methods are implemented by SDPT3.
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Fig. 2. RMSE and CPU time comparisons with Array 1.
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Fig. 3. RMSE and CPU time comparisons with Array 2.

Suppose two source signals impinge onto Array 1 from
α = [−25◦, 30◦] and β = [−35◦, 0◦]. We examine the per-
formance of our methods with comparison to ANM in terms
of RMSE and CPU time, respectively. The SNR is set to 10dB
and the number of snapshots varies from 50 to 200. We car-
ry out 400 independent trials and show the statistical results
in Fig. 2. From Fig. 2 (a), it can be seen that, the perfor-
mance of these three methods is in general improved as the
number of snapshots grows. Due to the modified constraint,
MCC-ANM is superior to CC-ANM. Also, the performance
gap between ANM and MCC-ANM becomes smaller when L
gets large. Although ANM shows the best estimation perfor-
mance, its computational workload can be unaffordable (es-
pecially when L is large) as shown in Fig. 2 (b). On the other
hand, the computational complexity of our proposed methods
is immune to the number of snapshots.

We then use Array 2 to replace Array 1 and carry out the
previous experiment with the same settings. The simulation
results are provided in Fig. 3. Clearly, MCC-ANM gives
a better estimation performance than ANM does when L is
large enough. More importantly, our proposed methods are
much more computationally efficient than ANM in terms of
the running time comparison.

6. CONCLUSION

In this paper, we have addressed the 2-D DOA estimation
problem in the scenario of L-shaped arrays. By exploiting the
characteristics of the L-shaped array, two gridless methods
which can be applied to both uniform and sparse L-shaped
arrays have been proposed. Simulation results show that our
methods provide similar estimation performance to ANM
method but with a much smaller computational workload.
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