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ABSTRACT

We study the problem of direction of arrival estimation for arbitrary
antenna arrays. We formulate it as a continuous line spectral estimation
problem and solve it under a sparsity prior without any gridding
assumptions. Moreover, we incorporate the array’s beampattern
in form of the Effective Aperture Distribution Function (EADF),
which allows to use arbitrary (synthetic as well as measured) antenna
arrays. This generalizes known atomic norm based grid-free DOA
estimation methods (that have so far been limited to uniformly spaced
arrays) to arbitrary antenna arrays. In addition, our formulation
allows to incorporate compressed sensing in form of special linear
combinations of the antennas’ output ports. We provide conditions for
the successful reconstruction of a certain number of targets depending
on the amount of compression and the EADF of the antenna array. Our
results are applicable to measurement matrices from any sub-Gaussian
distribution.

Index Terms— DOA estimation, Atomic Norm Minimization,
Sparse Signal Recovery

1. INTRODUCTION

Direction of Arrival (DOA) estimation has been a field of active
research for several decades [1] with a wide range of applications such
as radar, sonar, communications, or channel sounding. Conventional
techniques either exploit some algebraic structures of the underlying
array manifolds or employ iterative solutions of the underlying
non-convex maximum likelihood estimation problem [1].

Recently, connections between the DOA estimation problem and
the emerging field of compressed sensing (CS) have been discovered
[2]. In particular, since the observed signals are sparse in the angular
domain, algorithms from the field of sparse signal recovery (SSR)
can be applied for DOA estimation [3, 4]. Since the angle is a
continuous parameter and its discretization introduces an unwanted
model mismatch [5], grid-free SSR methods are of particular interest.

For the special case of uniform linear arrays (ULA) with isotropic
antenna elements, the DOA estimation problem is equivalent to a
line-spectral estimation problem and as such it can be cast into an
atomic norm minimization (ANM) problem [6, 7]. However, this
assumption is quite unrealistic in practice since isotropic antenna
elements do not exist and ULAs are impractical for applications like
direction finding and channel sounding where a uniform sensitivity of
the array is desired.
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The authors in [8] extend the grid-free approach from the ULA
case to a randomly subsampled ULA arrays and demonstrate, that the
grid-free sparse recovery approach to DOA generalizes to this setting.
However, the array still has to fulfill the contraint, that it originates
from an ULA and as such is not as flexible as the method proposed
here.

This paper extends the prior work of grid-free sparsity-based DOA
estimation to arbitrary antenna arrays. Since beampatterns of antenna
arrays are periodic and rather smooth functions, they can typically be
very well described by a truncated Fourier series [9]. This description
is also known as the Effective Aperture Distribution Function (EADF).
As we show, the EADF allows to rewrite the DOA estimation problem
into a generalized line spectral estimation problem, for which an
ANM-based approach is known [10]. Adopting [10] to the DOA
setting allows us to develop grid-free sparsity-based DOA estimation
algorithms that are applicable to arbitrary arrays. Moreover, we obtain
performance guarantees that depend on the specific beam pattern of
the array as well as the amount of compression applied to it. Our
results are applicable to compression matrices drawn from an arbitrary
sub-Gaussian distribution. In our numerical results, we demonstrate the
performance in the noise-free as well as the noisy case for Gaussian as
well as binary (±1) compression matrices since the latter are very
relevant in practice from a hardware realization point of view.

2. DATA MODEL

Let a(θ) : [0, 2π)→ CM model the response of an array comprising
of M antennas for a planar wave impinging from azimuth angle
θ. Naturally, each element am(θ), m = 1, 2, . . . ,M is a periodic
function in θ. Moreover, since beam patterns are typically quite smooth
functions, they can be very well approximated by a truncated Fourier
series [9] given by

am(θ) ≈

L−1
2∑

`=−L−1
2

gm,`e
θ`, (1)

where we have considered an odd number of L terms. In matrix form,
(1) can be written as

a(θ) ≈ G · f(θ), (2)

whereG ∈ CM×L contains the coefficients gm,` and rk(G) =M

and f(θ) = [e−θ(L−1)/2, . . . , eθ(L−1)/2]T is the Fourier interpola-
tion kernel. In practiceG is obtained by measuring a(θ) on a fine grid
of angles, computing its Fourier coefficients, and truncating them at a
reasonable, small threshold [9].

We assume that a superposition of S planar wavefronts from
distinct directions θs is received by an antenna array with EADFG ∈
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CM×L and a subsequent spatial compression step symbolized by a
compression matrix Φ ∈ CK×M where K < M and ρ = K/M < 1
is the compression factor. This means that Φ achieves a reduction from
M antenna ports to K channels that are actively downsampled and
digitized. Such a reduction can be implemented with a network of
power splitters, phase shifters, amplifiers, and combiners. Note that
from the hardware complexity point of view it is attractive to limit Φ
to fewer degrees of freedom, e.g., adjusting only the phase or using
only values of ±1 (which only needs inverters that admit a broadband
realization). For details on the design and the realization of a spatial
compression, the reader is referred to [11]. The received signal can
then be expressed as

z = Φ ·G · x+w = Γ · x+w, where (3)

x =

S∑
s=1

csf(θs), (4)

the vector w represents the additive noise, and we have defined
Γ = Φ ·G for brevity.

3. RECONSTRUCTION

Our aim is now to recover S ∈ N as well as cs ∈ C and θs ∈ [0, 2π)
for s = 1, 2, . . . , S from the observed z. Provided that z has a sparse
representation shown in (4), this can be uniquely achieved given that S
is small and a sufficient number of measurements is available.

To this end, we introduce the so called atomic norm ‖·‖A for a
given set A ⊂ CM , which has to fulfill only very mild conditions in
order for

x 7→ ‖x‖A = inf {t > 0 | x ∈ t · conv(A)} (5)

to be a norm on CM , where conv(A) denoted the convex hull of the
set A. In our case, the sparse representation (4) is spanned by the
Fourier vectors f(θ) and therefore, we can think of the reconstruction
as a line spectral estimation problem with an atomic set described as

A =
{
f(θ) ∈ CM

∣∣ θ ∈ [0, 2π)
}
. (6)

The problem we aim at solving is now

min ‖x‖A subject to ‖z −ΦGx‖2 ≤ ε. (7)

where ε accounts for the additive noise. This type of optimization
problem is called atomic norm minimization and it is a convex problem,
which in the case of line spectral estimation can be reformulated as a
semidefinite program (SDP) [6] and reads as

min
(x,u,t)∈CL×CL×R

1

2n
trToep(u) +

1

2
t

subject to
Å
Toep(u) x
xH t

ã
� 0,

‖z −ΦGx‖2 6 ε.

(8)

Here, Toep(u) is a hermitian Toeplitz matrix with u as its first column,
A � 0 denotes that the matrixA is positive semidefinite and trA is
the trace ofA. Once the problem is solved, we can recover θs from
Toep(u) by applying the Vandermonde decomposition via standard
methods such as MUSIC or ESPRIT and the cs via a least squares
fit [6].

4. RECOVERY GUARANTEES

In this section we provide a sufficient condition such that the convex
optimization problem shown in Section 3 has a unique solution. The
derivation follows [10], adapting it to our setting where Γ = Φ ·G

withG being given by the array and Φ representing the randomly
chosen compression matrix. As in [10] we study the noise-free case
only.

We begin with the following definition that describes a class of
matrix-valued random distributions which have the property that an
instance drawn from this ensemble yields successful recovery via (7)
with high probability.

Definition 4.1 (sub-Gaussian matrices). A matrixA ∈ CK×M is b-
sub-Gaussian with population covariance Σ if its rows are independent
of each other and for all k = 0, . . . ,K − 1 the k-th row ak ∈ C1×M

ofA satisfies
E{ak} = 0, E{ak

H

ak} = Σ (9)

for an invertible covariance matrix Σ ∈ CM×M and for any vector
x ∈ CM it holds that

P
(∣∣akx∣∣ > t‖x‖2

)
6 e
− t2

b2 . (10)

In [10, Theorem 2] the authors state that these matrices are good
compression matrices formalized in the following result.

Theorem 4.1. Let A ∈ CK×M be a b-sub-Gaussian matrix with
population covariance Σ and measurements given by z = Ax for x
as in (4). Assume furthermore that

min
i 6=j∈[S]

|θi − θj | >
4

L
.

Then as long as
K > cS log(L)b−2σ(Σ)

for a fixed constant c, x is the unique minimizer of (7) with probability
at least 1− exp(−(K − 2)/8). Here σ(Σ) is the condition number
of Σ.

In our setting, since Γ = Φ ·G and the matrixG is completely
determined by the antenna array, we can only choose Φ freely. We draw
the rows ϕk of Φ for k = 1, . . . ,K i.i.d. from a random distribution
F with values in CM . Then clearly Γ ∼ F̂ for some distribution
F̂ with values in CK×M . The next definition describes the type of
distribution we use for the entries of Φ.

Definition 4.2 (sub-Gaussian random variable). A real valued random
variable X is called sub-Gaussian with variance factor c, if

E exp(λX) 6 λ2 c

2
for all λ ∈ R.

Let ϕk,m be independently and identically distributed for each
k ∈ 1, . . . ,K,m ∈ 1, . . . ,M as centered sub-Gaussian distributions
with variance 1. With these, we define

Φ = (ϕk,m)k,m and as above Γ = Φ ·G. (11)
Now, we only need to verify that the distribution of Γ is b-sub-Gaussian
(in the matrix sense) and calculate the parameters b and Σ to specify
the number of measurements needed.

To this end, we need two standard results from probability theory,
which we summarize from results in [12, Chapters 2.2, 2.3]:

Lemma 4.1. Let ξ1, . . . , ξn for n ∈ N be independent real valued
random variables. Then

1. E
ß
exp

Å
t ·

n∑
i=1

ξi

ã™
=

n∏
i=1

E {exp(t · ξi)}

2. Let X be a real valued sub-Gaussian random variable X with
variance factor c, then

P(X > t),P(X < −t) 6 exp(− t
2

2c
) (12)
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With this Lemma at hand, we calculate the moment generating
function of Γk,` for k = 1, . . . ,K and ` = 1, 2, . . . , L via

Proposition 4.1. Using the measurement setup from (11), the matrix
Φ ·G is b-sub-Gaussian with b−1 = max

16`6L
‖g`‖22 and Σ = GHG.

Proof. First of all note that since each element of Φ has zero mean
with independently drawn rows, we trivially have E(γk) = 0 as
well as E(γkγ`

H

) = δk` where γk is the k-th row of Γ. Also, we
have E(γk

H

γk) = GHG = Σ for all k which is invertible sinceG
was assumed to have full row-rank. What remains to be shown is
condition (10) for an appropriate value of b. To this end, we first
calculate

E {exp(tΓr,s)} =
M∏
m=1

E exp(tϕr,mgm,s))

6
1

2
t2

M∑
m=1

g2m,s

where we made use of both statements of Lemma 4.1. For some
given v ∈ CL and γr being the r-th row of Γ this can also be used to
calculate

E {exp(tγrv)} =
L∏
`=1

K∏
k=1

E {exp(v`gk,`t)}

6
1

2
‖v‖22t

2 max
16`6L

‖g`‖22,

where g` denotes the `-th column ofG. With this we have shown that Γ
obeys (10) and hence it is b-sub-Gaussian for b−1 = max

16`6L
‖g`‖22.

This results in the validity of the measurement scheme described
above if the number of measurements obeys

K > ĉS log(M) · max
16`6L

‖g`‖22 · σ(G
HG), (13)

where ĉ is a fixed constant. It is worth noting that the above result is
optimal up to the logarithmic factor, as already stated in [10]. This
illuminates that fact that sub-Gaussian measurements with similar
constants variance factors will qualitatively perform similarly at
atomic norm minimization. As explained in Section 2 an example for
compression matrices that are easy to realize in hardware is given
by binary ±1 matrices. These correspond to the i.i.d. Rademacher
distribution, which yields c = 1 as used in above Proposition.

5. NUMERICAL RESULTS

To demonstrate the performance of the proposed estimator, we
implemented it using CVX and the SDPT3 solver [13, 14]. For the first
experiment, we use a stacked polarimetric uniform circular patch array
(SPUCPA) which is depicted in Figure 1. It consists of two stacked
12-element uniform circular patch arrays and an additional cube of five
patch elements on top. Each element has two ports for vertical and
horizontal polarization. For the simulations, we use only the two rings
of 12 elements and only the vertical port so that M = 24 ports are
available. Moreover, the EADF for the beam pattern (which was
measured in an anechoic chamber) contains L = 25 coefficients per
antenna element.

To quantify the performance of our estimator, we compare it to the
deterministic Cramér-Rao Bound (CRB). Without spatial compression,
the CRB can be computed via

C(θ) =
σ2

2
tr
Ä[
<(DHΠ⊥AD � (ccH)T)

]−1
ä
, (14)

Fig. 1. Stacked polarimetric uniform circular patch array with 58 ports.
We have used only the ports corresponding to the two stacked circular
arrays with 12 elements per ring.
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Fig. 2. Estimation error (logarithmic scale) vs. K, S for the noise-free
case and Rademacher distributed compression matrices.

where A = GF (θ), D = G diag(µ)F (θ) and Π⊥A = I −
A(AHA)−1AH. Here F (θ) = [f(θ1), . . . ,f(θS)], the vector µ =
−(L−1)/2, . . . ,+(L−1)/2 and< denotes the real part of a complex
number. If we incorporate compression, (14) changes to [11]

C(θ) =
σ2

2
tr
Ä[
<(D̄HΠ⊥ĀD̄ � (ccH)T)

]−1
ä
, (15)

where Ā = ΦA = ΓF (θ) and D̄ = ΦD = Γdiag(µ)F (θ).
In Figure 2 we show the empirical phase transition for the noiseless

casew = 0. We vary the number of sources S and the number of
measurements K and draw the source positions randomly such that the
separation condition from Theorem 4.1 is always satisfied. Moreover,
the amplitudes c are drawn randomly on the complex unit circle. We
depict the empirical estimation error defined as

∑S
s=1(θs − θ̂s)

2 on a
logarithmic scale, i.e., values below −10 correspond to an estimation
error below 10−10 which can be considered to be rounding errors
of the floating point representation. Figure 2 considers a ±1 binary
Rademacher distribution, showing the best realization among 100 trials.
We observe a quite sharp phase transition that occurs between K = S
and K = 2S illustrated by the fact that left of the line corresponding
to K = S the reconstruction error is constantly high, whereas right of
the line indicating K = 2S we only observe rounding errors. This
confirms the theoretical prediction from Theorem 4.1 that suggests that
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Fig. 3. Estimation error vs. SNR for S = 2 sources and K = 12
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Fig. 4. Estimation error vs. SNR for S = 3 sources and K = 15

the required number of measurements K scales linearly with S.
To investigate the performance in the presence of noise with

variance σ2, the results shown in Figures 3 and 4 show the empirical
estimation error of the proposed method vs. the CRB for the compressed
and the uncompressed cases, where the optimization in (7) was run with
ε = σ/K. We compare the effect of using Gaussian and Rademacher
distributed compression matrices. For both we show the median (solid
lines) and the 25/75 percentiles (error bars and dotted lines). Moreover,
the corresponding CRBs are shown in dash-dotted lines. In Figure 3
we consider S = 2 sources and K = 12 (i.e., a compression rate of
50 %) whereas in Figure 4 we choose S = 3 sources and K = 15
(i.e., a compression rate of 62.5 %). As before, the source positions are
drawn randomly such that they always obey the separation condition
from Theorem 4.1. The results show the statistics over 2500 trials and
confirm that both distributions behave very similarly and provide
estimation errors that are close to the CRB.

In the last experiment we consider an array of M = 29 isotropic
antenna elements in a randomly generated array geometry, which is
depicted in Figure 5. We generate S = 5 sources at random positions
in a manner similar to the previous experiment. Figure 6 shows

0 1 2 3 4 5

x/

1
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3

4

y
/

Fig. 5. Randomly drawn array geometry (M = 29) for the experiment
shown in Figure 6.
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Fig. 6. Estimation error vs. SNR for S = 5 sources the M = 29
element array shown in Figure 5 (no compression).

the empirical estimation error vs. the CRB for the case where no
compression is applied (Φ = IM ). The result demonstrates that the
proposed method enables grid-free sparsity-based DOA estimation
with arbitrary array geometries and that it achieves the Cramér-Rao
Bound.

6. CONCLUSION

In this paper we investigate the problem of grid-free sparsity-based
direction of arrival (DOA) estimation using arbitrary antenna arrays
and compressed sensing. Applying a Fourier-based description of the
antenna array response we show that the DOA problem can be cast
as a generalized line spectral estimation problem that has recently
been studied in this context. In particular, we show that an atomic
norm minimization based framework can be applied that provides the
DOA estimates based on solving a convex semidefinite program. Our
description allows to incorporate spatial compressive sensing via
a randomly chosen compression matrix. Tuning existing recovery
guarantees to our setting allows to derive a condition on the required
number of measurements that depends on the array’s beam pattern as
well as the distribution of the compression matrix. Our approach
is applicable to arbitrary sub-Gaussian distributions, including the
binary Rademacher distribution that can be realized in hardware
very efficiently and shows a performance very close to the Gaussian
distribution.
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