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ABSTRACT
In the partial relaxation approach, at each desired direction,
the manifold structure of the remaining interfering signals im-
pinging on the sensor array is relaxed, which results in closed
form estimates for the interference parameters. By adopting
this approach, in this paper, a new estimator based on the un-
constrained covariance fitting problem is proposed. To obtain
the null-spectra efficiently, an iterative rooting scheme based
on the rational function approximation is applied. Simulation
results show that the performance of the proposed estimator
is superior to the classical and other partial relaxation meth-
ods, especially in the case of low number of snapshots, irre-
spectively of any specific structure of the sensor array while
maintaining a reasonable computational cost.

Index Terms— DOA Estimation, Partial Relaxation
Approach, Covariance Fitting, Eigenvalue Decomposition,
Rank-one Modification Problem

1. INTRODUCTION
Direction-of-Arrival (DOA) estimation has been a fundamen-
tal and long-established application in sensor array process-
ing. The application of DOA estimation spans multiple fields
of research, including wireless communication, radio astron-
omy, sonar, etc. [1, 2, 3, 4].

Recently, the partial relaxation approach [5] has emerged
as a promising approach for DOA estimation. Similar to the
conventional maximum likelihood estimators, the partial re-
laxation methods take both the effect of the signal in the di-
rection of interest and the interfering directions into account.
However, the manifold structure from the array geometry of
the received signals from interfering directions is relaxed to
make the problem computationally tractable, hence the name
partial relaxation. In comparison to the corresponding con-
ventional multidimensional fitting methods, the partial relax-
ation methods have a lower computational complexity while
obtaining superior error performance as compared to the con-
ventional spectral search algorithms.

Under the partial relaxation approach, the covariance
fitting estimator with the positive semidefinite (PSD) con-
straint, referred to as the constrained covariance fitting esti-
mator, poses several open questions despite obtaining the best
threshold performance under the investigated scenarios [5].

First, the PSD constraint that has been added to the covariance
fitting problem appears to be arbitrary and has merely been
introduced to make the problem computationally tractable.
Second, if the sample covariance matrix is singular, which
occurs if the number of snapshots is smaller than the number
of antennas, or theoretically in the noiseless case, the inverse
of the sample covariance matrix does not exist. As a conse-
quence, the constrained covariance fitting is not applicable.
Therefore, in this paper, a new covariance fitting estimator
which does not consider the PSD constraint is proposed and
efficiently solved. It can be shown that this estimator out-
performs other estimators in the partial relaxation family and
also the conventional subspace methods.

The paper is organized as follows. The signal model is
introduced in Section 2. A short overview of the partial re-
laxation approach and the formulation of the unconstrained
covariance fitting estimator, are presented in Section 3. An
computationally efficient method, which can be applied to all
methods of the partial relaxation family, is presented in Sec-
tion 4. To illustrate the performance gain of the proposed
methods, simulation results are presented in Section 5. Lastly
in Section 6, some remarks and extensions to further research
are discussed.

2. SIGNAL MODEL

Consider an array of M sensors receiving N narrowband
signals emitted from the sources with the corresponding un-
known DOAs θ = [θ1, . . . , θN ]

T . Furthermore, assume
that N < M . The measurement vector at the sensor array
x(t) = [x1(t), . . . , xM (t)]

T ∈ CM×1 in the baseband at the
time instance t is modeled as:

x(t) = A(θ)s(t) + n(t) with t = 1, . . . , T, (1)
where s(t) = [s1(t), . . . , sN (t)]

T ∈ CN×1 is the baseband
source signal vector from N sources and n(t) ∈ CM×1
denotes represents the additive circularly complex noise
vector at the sensor array with the noise covariance ma-
trix E

{
n(t)n(t)H

}
= σ2

nIM . The steering matrix A(θ) in
(1), which is assumed to have full column rank, is given by:

A(θ) = [a(θ1), . . . ,a(θN )] , (2)

where a(θn) ∈ CM×1 denotes the sensor array response for
the DOA θn. The equation in (1) can be rewritten for multiple
snapshots t = 1, . . . , T in a compact notation as:
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X = A(θ)S +N , (3)

where X = [x(1), . . . ,x(T )] ∈ CM×T is the received
baseband signal matrix. In a similar manner, we define
the source signal matrix S ∈ CN×T and sensor noise
matrix N ∈ CM×T as S = [s(1), . . . , s(T )] and N =
[n(1), . . . ,n(T )], respectively.

Assume that the source signals and the noise are uncorre-
lated, then the true covariance matrixR of the received signal
y(t) is given by R = E

{
x(t)x(t)H

}
= ARsA

H + σ2
nIM ,

where Rs = E
{
s(t)s(t)H

}
is the covariance matrix of the

transmitted signal s(t). In practice, the true covariance ma-
trixR is not available and the sample covariance matrix R̂ is
used:

R̂ =
1

T
XXH . (4)

Subspace techniques rely on the properties of the eigenspaces
of the sample covariance matrix R̂, which is decomposed as:

R̂ = ÛΛ̂Û
H

(5)

= Û sΛ̂sÛ
H

s + ÛnΛ̂nÛ
H

n . (6)

The diagonal matrix Λ̂s ∈ CN×N in (6) contains the N -
largest eigenvalues λ̂1, . . . , λ̂N , and Û s ∈ CM×N contains
the corresponding principal eigenvectors of the sample co-
variance matrix R̂. Similarly, Λ̂n ∈ C(M−N)×(M−N) and
Ûn ∈ CM×(M−N) contain the (M − N)-noise eigenvalues
λ̂N+1, . . . , λ̂M and the associated noise eigenvectors, respec-
tively.

3. PARTIAL RELAXATION APPROACH
3.1. General Concept
In the family of the maximum likelihood estimators, the DOA
estimation problem is formulated as:{

θ̃
}

= arg min
A(θ)∈AN

f (A (θ)) . (7)

where the array manifold AN is parameterized as:

AN = {A = [a(ϑ1), . . . ,a(ϑN )] |ϑ1 < . . . < ϑN} (8)

and f(.) is an objective function depending on the criteria
considered for the DOA estimation task. In the partial relax-
ation approach [5], however, instead of enforcing the steering
matrixA to be an element in the highly structured array man-
ifold AN , we assume that A ∈ ĀN , where the relaxed array
manifold ĀN is defined as follows:

ĀN =
{
A = [a,B] |a ∈ A1,B ∈ CM×(N−1)

}
. (9)

To obtain the estimated DOA, the grid search is applied
as follows: first we minimize the objective function in (7)
with respect to B, and then perform a grid search over
a = a(θ) ∈ A1 to find N -deepest local minima corre-
sponding to the DOAs. Applying this principle, in which we

partition A = [a,B], S =
[
s,JT

]T
in the signal model in

(3) with s ∈ CT×1 and J ∈ C(N−1)×T and denoteD = BJ ,

the partially relaxed constrained covariance fitting (PR-CCF)
estimator is formulated in [5] for each direction a = a(θ) as:

min
σ2
s≥0,D

∣∣∣∣∣∣R̂− σ2
saa

H −DDH
∣∣∣∣∣∣2
F

subject to R̂− σ2
saa

H −DDH � 0

subject to rank(D) ≤ N − 1.

(10)

As presented in [5], assuming the invertibility of the sample
covariance matrix R̂, the PR-CCF estimator outperforms con-
ventional methods in the threshold region. However, if R̂
is singular, it can be shown that the minimum of the objec-
tive function in (10) is constant regardless of the direction a,
and hence no grid search can be performed to determine the
DOAs. Motivated by this consideration, in the next subsec-
tion, we propose a modified method based on unconstrained
covariance fitting under the partial relaxation framework that
shows improved error performance.

3.2. Partially-Relaxed Unconstrained Covariance Fitting
(PR-UCF)
Comparing with the constrained version in (10), the formu-
lation of the PR-UCF omits the PSD constraint to yield the
following optimization problem for each direction a = a(θ):

min
σ2
s≥0,D

∣∣∣∣∣∣R̂− σ2
saa

H −DDH
∣∣∣∣∣∣2
F

subject to rank(D) ≤ N − 1.

(11)

Keeping σ2
s fixed, the minimizer D̃ of the optimization prob-

lem in (11) is obtained as the best (N − 1)-rank approxima-
tion of R̂− σ2

saa
H . Hence, the optimization of the PR-UCF

estimator in (11) is equivalent to:

min
σ2
s≥0

M∑
k=N

λ2k

(
R̂− σ2

saa
H
)
. (12)

If we denote the objective function in (12) as g
(
σ2
s

)
, a numer-

ical local minimizer σ̃2
s,U can be determined by noting that

g(σ2
s) is continuously differentiable. Applying the results in

[6, 7], the derivative g′
(
σ2
s

)
is given by:

g′
(
σ2
s

)
= −

M∑
k=N

2λ̄k(σ2
s)

σ4
sa

H
(
R̂− λ̄k(σ2

s)I
)−2

a
, (13)

where we introduce the shorthand notation:
λ̄k(σ2

s) = λk

(
R̂− σ2

saa
H
)
. (14)

Note that the denominator in each summand of the expression
in (13) is nonnegative, we observe that:
• If σ2

s → 0 then λ̄k(σ2
s) ≥ 0 with k = N, . . . ,M and

therefore:
lim
σ2
s→0

g′
(
σ2
s

)
< 0. (15)

• If σ2
s → ∞, the rank-one component −σ2

saa
H is

dominant to R̂ and thus λ̄M
(
σ2
s

)
≈ −σ2

s ||a||
2
2. The re-

maining eigenvalues λ̄k
(
σ2
s

)
with k = N, . . . , (M − 1)

are bounded thanks to the Weyl’s inequality [8]. Com-
bining the two mentioned remarks, there exists a scalar
σ2
s,right <∞ such that

g′
(
σ2
s,right

)
> 0. (16)
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As a consequence, we can choose a sufficiently small σ2
s,left

and sufficiently large σ2
s,right which satisfy (15) and (16), re-

spectively. Then, a simple bisection search on g′
(
σ2
s

)
in (13)

in the interval
[
σ2
s,left, σ

2
s,right

]
can be used to compute a local

minimizer 1 σ̃2
s,U of (12).

4. EFFICIENT IMPLEMENTATION FOR PR-UCF

The proposed estimator PR-UCF requires extensive compu-
tation of the eigenvalues over the entire angular field-of-view.
The computational complexity of the full eigenvalue decom-
position may limit the usage of the proposed partial relaxation
approach in practice. Furthermore, from an algorithmic per-
spective, the expressions in (13) requires the computation of
the eigenvalues of a generic matrix form as follows:

D − ρzzH = ŪD̄Ū
H
, (17)

where D = diag (d1, . . . , dK) ∈ RK×K is a constant real
diagonal matrix, ρ ∈ R is an arbitrary positive real scalar
and z = [z1, . . . , zK ]

T ∈ CK×1 is a direction-dependent
complex-valued vector. The relationship between the generic
form in (17) and the bisection algorithm in Subsection 3.2 is
further detailed in the subsections below.

4.1. Computation Procedure
Initially proposed in [9] to compute the eigenvalue decompo-
sition of symmetric tridiagonal matrices in a parallel manner,
the procedure of rank-one update on the eigenvalues of (17)
is based on the interlacing theorem as follows [7]:
Theorem 1 Let {d1, . . . , dK} be the elements on the diago-
nal of the matrix D ∈ RK×K where {d1, . . . , dK} are dis-
tinct and sorted in descending order. Further assume that
ρ > 0 and z ∈ CK×1 contains only nonzero entries. If the
eigenvalues

{
d̄1, . . . , d̄K

}
of the matrix D − ρzzH are also

sorted in descending order, then:
•
{
d̄1, . . . , d̄K

}
are the K zeros of the secular function

p(x) = 0, where p(x) is given by:
p(x) = 1− ρzH (D − xI)

−1
z (18)

= 1− ρ
K∑
k=1

|zk|2

dk − x
. (19)

•
{
d̄1, . . . , d̄K

}
satisfy the interlacing property, i.e.,

d1 > d̄1 > d2 > d̄2 > . . . > dK > d̄K . (20)
Based on Theorem 1, computationally efficient rooting of the
secular function in (19) is of great importance for the accel-
eration of our proposed estimator. Without loss of generality,
we consider the k-th root of the secular function d̄k which
lies inside the interval (dk+1, dk) where k = 1, . . . ,K and
dK+1 = −∞. By defining the two auxiliary rational func-
tions:

ψk(x) = −ρ
k∑
j=1

|zj |2

dj − x
(21)

1From the simulations, the function g(σ2
s) is generally unimodal and

therefore the bisection search converges to a global minimum.

Algorithm 1 Determining the k-th root of the secular function

1: Initialization: τ = 0, arbitrary x(0) 6= dk, ε = 10−6

2: repeat
3: Find the parameters p and q such that:
Rk−1;p,q(x

(τ)) = ψk(x(τ)) and R′k−1;p,q(x
(τ)) = ψ′k(x(τ))

4: Find the parameters r and s such that:
Rk;r,s(x

(τ)) = φk(x(τ)) and R′k;r,s(x
(τ)) = φ′k(x(τ))

5: Find x(τ+1) ∈ (dk+1, dk) which satisfies:
−Rk−1;p,q(x(τ+1)) = 1 +Rk;r,s(x

(τ+1))

6: τ ← τ + 1
7: until

∣∣x(τ+1) − x(τ)
∣∣ < ε

8: return d̄k = x(τ+1)

φk(x) =

−ρ
K∑

j=k+1

|zj |2

dj − x
if 1 ≤ k ≤ K − 1

0 if k = K,

(22)

the secular function in (19) can be rewritten as:

−ψk(x) = 1 + φk(x). (23)

Since both ψk(x) and φk(x) are defined as the sum of mul-
tiple rational functions, a straightforward approach to solve
(23) iteratively around a given point x(τ) consists of using ra-
tional functions of first degree as approximants. The author
in [10] suggest approximants of type:

Rk;p,q(x) =

p+
q

dk+1 − x
if 0 ≤ k ≤ K − 1

0 if k = K,
(24)

and choose the parameters p, q such that the approximants
coincide at a given point x(τ) with the corresponding exact
functions in (21) and (22), respectively, up to the first-order
derivative. For convenience purposes, the steps for determin-
ing the roots of the secular function in (19) are summarized in
Algorithm 1. Note that since the approximant in (24) is only
of first order, the steps 2-4 in Algorithm 1 can be solved in
closed form. Interestingly, this approach is also applicable to
all partial relaxation estimators in [5].
4.2. Application to PR-UCF
To reduce the number of required eigenvalues for the deriva-

tive, the function g(σ2
s) =

M∑
k=N

λ2k

(
R̂− σ2

saa
H
)

is rewrit-

ten as follows:

g(σ2
s) = tr

(
R̂− σ2

saa
H
)
−
N−1∑
k=1

λ2k

(
R̂− σ2

saa
H
)

(25)

= tr
(
R̂

2
)
− 2σ̂2

sa
HR̂a+ σ̂4

s ||a||
4
2

−
N−1∑
k=1

λ2k

(
R̂− σ̂2

saa
H
)
.

(26)
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Fig. 1: Uncorrelated sources, number of snapshots T = 8

The derivative g′
(
σ2
s

)
is calculated as:

g′
(
σ2
s

)
= −2aHR̂a+ 2σ2

s ||a||
4
2

+
N−1∑
k=1

2λ̄k(σ2
s)

σ4
sa

H
(
R̂− λ̄k(σ2

s)I
)−2

a

(27)

where λ̄k(σ2
s) is defined in (14). By substituting z = Û

H
a,

we obtain:

λ̄k(σ2
s) = λk

(
Λ̂− σ2

szz
H
)
, (28)

g′
(
σ2
s

)
= −2zHΛ̂z + 2σ2

s ||z||
4
2

+

N−1∑
k=1

2λ̄k
(
σ2
s

)
σ4
s

M∑
j=1

|zj |2(
λ̂j − λ̄k(σ2

s)
)2 . (29)

The expressions in (28) and (29) suggest to apply the proce-
dure in Subsection 4.1 with D = Λ̂, ρ = σ2

s and z = Û
H
a.

For faster convergence of Algorithm 1, the eigenvalues from
the previous iteration in the bisection search can be reused as
initialization values for the current iteration.

5. SIMULATION RESULTS
In this section, simulation results regarding the performance
of different DOA estimators are presented and compared with
the stochastic Cramer-Rao Bound (CRB) [11]. The number
of Monte-Carlo runs is 4000. The Root-Mean-Squared-Error
(RMSE) is calculated as:

RMSE =

√√√√√ N∑
n=1

(
θ̃n − θn

)2
N

, (30)

The estimated DOAs θ̃ = [θ̃1, . . . , θ̃N ]T and the true DOAs
θ = [θ1, . . . , θN ]

T in (30) are sorted in ascending order.
In our simulations we assume two uncorrelated but closely
spaced source signals at θ = [45◦, 50◦]

T which impinge on
a ULA of M = 10 antennas with the spacing equal to half
of the wavelength. The source signals have the mean value
of zero and unit power. The Signal-to-Noise-Ratio (SNR) is
calculated as SNR = 1

σ2
n

.
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Fig. 2: SNR = 10 dB, number of snapshots T = 100

Figure 1 depicts a scenario where the number of snapshots
T = 8 is smaller than the number of antennas M = 10. In
this case, the sample covariance matrix calculated in (4) is
singular, and therefore the PR-CCF is not applicable. Instead,
we apply the diagonal loading technique with the loading fac-
tor γ = 10−4 on the sample covariance matrix [12], [13]. To
avoid outliers in RMSE caused by misdetection and to simu-
late the DOA tracking process [14], 1% of the estimates with
the largest error for all investigated algorithms are removed
before calculating the RMSE. It can be observed that even
in the case of a very low number of snapshots, PR-UCF ob-
tains the best SNR threshold behavior. The performance of
PR-CCF is highly degraded even with the diagonal loading
technique.

In Figure 2, the running time of the DOA estimation algo-
rithms with respect to the number of antennasM are depicted.
The term Generic in Figure 2 refers to the naive implementa-
tion using the MATLAB command eig for the eigenvalue de-
composition. The running time of the partial relaxation math-
ods implemented with Algorithm 1 is drastically reduced in
comparison with the default MATLAB command and follow
a similar trend of MUSIC.

6. CONCLUSIONS AND OUTLOOK

In this paper, a new DOA estimator under the partial relax-
ation approach based on the covariance fitting problem is in-
troduced. Simulation results show that, even though no par-
ticular structure of the sensor array, e.g., Vandermonde struc-
ture from a uniform linear array, is required, the proposed
DOA estimator exhibits superior threshold performance to
root-MUSIC in difficult scenarios. By applying known results
regarding the evaluation of the eigenvalues of a Hermitian ma-
trix modified with a rank one component, considerably lower
computational time is achieved.

For future work, the theoretical error behavior and con-
sistency of methods is an interesting open problem and re-
quires further investigation. A theoretical optimal weighting
should be acquired. Furthermore, the derivation of search-
free partially-relaxed estimators based on polynomial rooting
is also of great interest.
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