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ABSTRACT

In this paper, a novel noncircularity-based localization method
for mixed near-field (NF) and far-field (FF) sources is pro-
posed with a symmetric uniform linear array (ULA) in the
presence of unknown mutual coupling (UMC). Based on the
principle of rank reduction (RARE), the multiple parameter-
s of the sources including direction of arrival (DOA), range
and mutual coupling coefficient (MCC) are decoupled, so that
only several one-dimensional (1-D) spectral searches are re-
quired for their estimation. Meanwhile, the proposed method
can also distinguish the types of sources without any extra
processing. Simulation results are provided to demonstrate
the effectiveness of the proposed method for the classification
and localization of mixed sources under UMC.

Index Terms— DOA estimation, near-field, far-field,
noncircular signals, mutual coupling.

1. INTRODUCTION

Recently, simultaneous localization of both near-field (NF)
and far-field (FF) signals has drawn a lot of attention in the
array signal processing community given its many practical
applications such as speaker localization using microphone
arrays and guidance (homing) systems. In [1], Liang et al.
proposed a two-stage MUSIC method based on two special
fourth-order cumulant (FOC) matrices. By using FOC matri-
ces, localization of mixed sources with sparse signal recon-
struction was studied in [2] and a mixed-order MUSIC algo-
rithm using a sparse symmetric array was proposed in [3], re-
spectively. However, one common issue with these cumulant-
based methods is their high computational complexity to con-
struct FOC matrices. To avoid this issue, a series of second-
order statistics (SOS)-based methods were presented in [4–
6]. In [4], an oblique projection MUSIC-based algorithm was
proposed to separate the NF and FF sources, which unfor-
tunately results in extra estimation errors. To overcome the
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extra estimation errors in NF localization [4], Zuo et al. de-
veloped an alternating iterative method in [5] by recalculating
the oblique projector without eigendecomposition. By resort-
ing to the spatial differencing technique, a mixed localization
method was presented in [6] by eliminating the FF and noise
components from the covariance matrix of the array observa-
tion. It is to be noted that to avoid phase ambiguities, all the
abovementioned mixed source localization methods require
the inter-sensor spacing to be constrained within a quarter
wavelength, which inevitably results in mutual coupling ef-
fect between closely located elements [7, 8]. Only in [9], a
mixed source localization method was put forward in the pres-
ence of mutual coupling. On the other hand, strictly noncircu-
lar or rectilinear signals [10–18], including amplitude modu-
lated (AM) and binary phase shift keying (BPSK) signals, are
usually encountered in the context of radio communications,
for which a significant gain in terms of the direction of arrival
(DOA) estimation performance can be achieved by taking in-
to consideration both the covariance matrix and conjugate co-
variance matrix of noncircular signals.

To the best of our knowledge, no work for noncircularity-
based localization of mixed NF and FF signals in the presence
of unknown mutual coupling (UMC) has been reported thus
far. Therefore, in this paper, based on a ULA, we propose a
localization method for mixed NF and FF sources by exploit-
ing the noncircularity of the signals under UMC. By using the
principle of rank reduction (RARE) [19, 20], it is shown that
only several one-dimensional (1-D) spectral searches are re-
quired to successively estimate the parameters of mixed NF
and FF rectilinear sources including DOA, range and mutual
coupling coefficient (MCC). Meanwhile, distinguishing the
types of sources is also solved without any extra processing.

Notations: (·)∗, (·)T , (·)H , and (·)−1 represent opera-
tions of conjugation, transpose, conjugate transpose, and in-
verse, respectively; E[·] is the expectation operation; diag{·}
stands for the diagonalization operation; Ip denotes the p-
dimensional identity matrix; Πp is a p × p exchange ma-
trix with ones on its anti-diagonal and zeros elsewhere;
blkdiag{Z1,Z2} represents a block diagonal matrix with
diagonal entries Z1 and Z2.
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2. ARRAY SIGNAL MODEL

Similar to the scenario considered in [9], we suppose that K
uncorrelated narrowband strictly noncircular sources sk(l)
(k = 1, 2, . . . ,K) located in either NF or FF region, im-
pinge upon a symmetric uniform linear array (ULA) with
M = 2N + 1 sensors. Without loss of generality, we assume
the first K1 incoming sources sN,k(l) are NF parameter-
ized by (θk, rk), where θk and rk are the DOA of range
and NF sources, (k = 1, 2, . . . ,K1), while the remaining
K2 = K − K1 sources sF,k(l) are FF parameterized by
(θk,∞) (k = K1 + 1,K1 + 2, . . . ,K), and K1 and K2

are known in advance. Clearly, an FF source can be con-
sidered as a special NF one where the range rk approaches
to ∞. With the array center indexed by 0 being the phase
reference point, the L snapshots of the array observed signal
x(l) = [x−N (l), · · · , x0(l), · · · , xN (l)]T can be expressed as

x(l)=AN sN (l) + AF sF (l) + n(l) (1)

where n(l)= [n−N (l), · · · , n0(l), · · · , nN (l)]
T is the circu-

lar Gaussian noise vector, with zero mean and variance σ2
n for

each sensor, which is uncorrelated with the impinging signal,
sN (l) and sF (l) are the signal vectors of NF and FF sources,
respectively, and AN and AF are the array steering matrices
of NF and FF signals with aN (θk, rk) and aF (θk) represent-
ing, respectively, the NF and FF steering vectors, i.e.,

AN= [aN (θ1, r1), · · · , aN (θK1 , rK1)] (2)

aN (θk, rk) = [ej(−Nγk+N
2χk), · · · , 1, · · · , ej(Nγk+N

2χk)]T

(3)
AF= [aN (θK1+1,∞), · · · , aN (θK ,∞)]

= [aF (θK1+1), · · · , aF (θK)]
(4)

aF (θk) = [ej(−Nγk), · · · , 1, · · · , ej(Nγk)]T (5)

where γk = −2πdsinθk/λ and χk = πd2cos2θk/(λrk) are
called electric angles with λ being the wavelength of the in-
coming signal, θk ∈

[
−π

2 ,
π
2

]
, (k = 1, · · ·K), the DOA of the

kth NF or FF signal, d the spacing between adjacent sensors
satisfying d ≤ λ/4 to avoid estimation ambiguity and rk the
range of the kth NF signal which is within the Fresnel region
and satisfies rk ∈

[
0.62(D3/λ)1/2, 2D2/λ

]
, k = 1, · · ·K1,

with D being the array aperture.
Due to the strictly noncircularity, the signal vectors

sN (l) and sF (l) can be expressed as sN (l) = ψ
1/2
No sNo(l)

and sF (l) = ψ
1/2
Fo sFo(l), respectively, where sNo(l) =

[so,1(l), ..., so,K1(l)]
T and sFo(l) = [so,K1+1(l), ..., so,K(l)]T

are the NF and FF real-valued signals, respectively. The di-
agonal matrices ψ1/2

No = diag(ejψ1/2, · · · , ejψK1/2) and
ψ

1/2
Fo = diag(ejψK1+1/2, · · · , ejψK/2) are the arbitrary phase

shifts corresponding to the NF and FF strictly non-circular
sources sN (l) and sF (l), respectively.

In order to avoid the phase ambiguities, the inter-element
spacing d should be within a quarter wavelength, which will

greatly increase the mutual coupling effect between neighbor-
ing sensors. In the presence of mutual coupling, (1) should be
modified as

x(l)=CAN sN (l) + CAF sF (l) + n(l) (6)

where C denotes the M ×M mutual coupling coefficient (M-
CC) matrix of the ULA, which is a banded symmetric Toeplitz
matrix with P + 1 nonzero MCCs [6]

C = toeplitz(c, c) (7)

where c = [1, cT0 ]T , c0 = [c1, c2, . . . , cP ]
T , toeplitz(·, ·) is

the toeplitzation operation. Here P is the maximum range for
which the mutual coupling effect is considered.

3. THE PROPOSED METHOD

The DOA estimation performance of a traditional subspace
method based on the array signal model (6) would degrade
without compensating for mutual coupling. Here, we develop
a two-stage RARE-based method to determine the DOAs and
ranges of the mixed NF and FF strictly noncircular sources
under UMC.

To exploit the noncircularity of incident signals, a new
vector z(l) is constructed by stacking the observed data vector
x(l) and its conjugate counterpart x∗(l) as follows

z(l) =
[

x(l)
x∗(l)

]
= CeAeN sN (l) + CeAeF sF (l) + ne(l)

(8)

where
Ce = blkdiag{C,C∗} (9)

AeN=

[
AN
AN ∗ψN

∗

]
= [aeN (θ1, r1, ψ1), · · · , aeN (θK1 , rK1 , ψK1)]

(10)

with

aeN (θk, rk, ψk) =

[
aN (θk, rk)
aN ∗(θk, rk)e

−jψk

]
(11)

AeF=
[

AF
AF ∗ψF

∗

]
= [aeF (θK1+1, ψK1+1), · · · , aeF (θK , ψK)]

(12)

with

aeF (θk, ψk) =
[

aF (θk)
aF ∗(θk)e

−jψk

]
(13)

ne(l) =
[

n(l)
n∗(l)

]
(14)

The covariance matrix of z(l) is then given by

R = E[z(l)zH(l)]

= CeAeNRsNAHeNCHe + CeAeFRsFAHeFCHe + σ2
nI2M

(15)
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where RsN = E[sN (l)sHN (l)], RsF = E[sF (l)sHF (l)] and
Rs = E[s(l)sH(l)] are the covariance matrices of the NF, FF
and their mixed signals, respectively. The eigenvalue decom-
position of R is can be written as

R = UsΛsUHs + UnΛnUHn (16)

where the 2M ×K matrix Us and the 2M × (2M −K) ma-
trix Un are the signal subspace and noise subspace, respec-
tively. The K ×K matrix Λs = diag{λ1, . . . , λK} and the
(2M−K)×(2M−K) matrix Λn = diag{λK+1, . . . , λ2M}
are diagonal matrices, where λ1 ≥ λ2 ≥ · · · ≥ λK >
λK+1= · · ·=λ2M=σ2

n are the eigenvalues of R.

3.1. DOA Estimation of FF Sources and MCC Estimation

According to [7, 8], CaF (θ) has the alternative expression as

CaF (θ) = Tx(θ)c (17)

where
Tx(θ) = Tx1(θ) + Tx2(θ) (18)

[Tx1(θ)]i,j=
{

[aF (θ)]i+j−1 i+ j ≤M + 1
0 otherwise

(19)

[Tx2(θ)]i,j=
{

[aF (θ)]i−j+1 i ≥ j ≥ 2
0 otherwise

(20)

Obviously, based on the orthogonality between the noise sub-
space spanned by Un and the signal subspace spanned by Us,
and the fact that the signal subspace can be also spanned by
CeAeN and CeAeF jointly, we have

UHn CeaeN (θk, rk, ψk) = 0, k = 1, 2, . . . ,K1. (21)

UHn CeaeF (θk, ψk) = 0, k = K1 + 1,K1 + 2, . . . ,K. (22)

To avoid multi-dimensional spectral search for estimating
the DOA-range pairs, we have to decouple the multiple-
parameters to decrease the computational load. First, the FF
DOA parameters are decoupled from the other parameters.
Substituting (9) and (13) into (22) and using (17), we have

UHn T(θk)Γ(c, ψk) = 0 (23)

where T(θk) = blkdiag{Tx(θk),T∗
x(θk)}, Γ(c, ψk) =[

c
c∗e−jψk

]
. Now define a function pF (θ) that is relat-

ed to the DOA parameter as follows

pF (θ) = {det[QF (θ)]}−1. (24)

where QF (θ) = TH(θ)UnUHn T(θ).
Based on the RARE principle, if and only if θ = θk, (k =

K1 +1, . . . ,K), the matrix QF (θ) is rank deficient or equiv-
alently det[QF (θ)] = 0. If searched over the confined region

1Becasuse an FF source can be considered as a special NF one where the
range rk approaches to ∞, (21) holds for both NF and FF sources.

θ ∈
[
−π

2 ,
π
2

]
, the DOA estimates of all FF sources could be

obtained from the K2 highest peaks.
Then, with the estimated DOA of FF sources, {ĉ, ψ̂k} can

be obtained by finding the minima of the following function

{ĉ, ψ̂k} = min
c,ψ

Γ(c, ψ)HQF (θ̂)Γ(c, ψ), (25)

which implies that Γ(ĉ, ψ̂k) is just the unique eigenvector cor-
responding to the smallest eigenvalue of QF (θ̂k), namely

Γ̂k = Γ(ĉ, ψ̂k) = emin[QF (θ̂k)], emin(1) = 1. (26)

And we obtain the MCCs ĉ0 as

ĉ0 =
K∑

k=K1+1

Γ̂k(2 : P + 1)/(K −K1) (27)

The mutual coupling matrix Ĉ can then be reconstructed ac-
cording to its banded symmetric Toeplitz structure in (7).

3.2. DOA and Range Estimation of NF Sources

With estimated MCC Ĉ, DOA and range estimation of NF
sources can be obtained from (21). Since the array is sym-
metric about the center sensor, (3) can be rewritten as

aN (θk, rk) = κN (θk)ςN (θk, rk) (28)

whereκN (θk) is a (2N+1)×(N+1) matrix, whose elements
depend only on the DOA parameter, i.e.,

κN (θk)=
[
ϑT1 (θk) ϑT2 (θk) ϑT3 (θk)

]T
(29)

where the matrices ϑTi (θk), (i = 1, 2, 3) are given by

ϑ1(θk) = [p1(θk), 0N×1]N×(N+1) (30)

with

p1(θk) = diag{ej(−N)γk , ej(−N+1)γk , ..., ej[−N+(N−1)]γk}
(31)

ϑ2(θk) = [01×N , 1]1×(N+1) (32)

ϑ3(θk) = [ΠNp3(θk), 0N×1]N×(N+1) (33)

with

p3(θk) = diag{ej(N)γk , ej(N−1)γk , ..., ej[N−(N−1)]γk}
(34)

Meanwhile, ςN (θk, rk) is dependent on both the DOA and
range parameters as given by

ςN (θk, rk) = [ej(−N)2χk , ej(−N+1)2χk , ..., ej(−N+N)2χk ]T

(35)
Then, with (28), (21) can be rewritten as

0 = UHn CeaeN (θk, rk, ψk)

= UHn CeυN (θk)ζN (θk, rk)ιN (ψk)
(36)
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Fig. 1: RMSE versus SNR.

where
υN (θk)=blkdiag{κN (θk),κ

∗
N (θk)} (37)

ζN (θk, rk)=blkdiag{ςN (θk, rk), ς
∗
N (θk, rk)} (38)

ιN (ψk)=

[
1

e−jψk

]
(39)

We now define a function pN (θ) that is related only to the
DOA parameter as follows

pN (θ) = {det[QN1(θ)]}−1. (40)

where QN1(θ) = υHN (θ)Ĉ
H

e UnUHn ĈeυN (θ). Similarly, we
noticed that ζN (θk, rk) ̸= 0, ιN (ψk) ̸= 0, and
UHn ĈeυN (θk)ζN (θk, rk)ιN (ψk) = 0, k = 1, 2 . . .K ′, (K ′ ≤
K).2 Based on the RARE principle, the DOAs θk of al-
l mixed signals can be obtained from the highest peaks of
pN (θ) searched over the confined region θ ∈

[
−π

2 ,
π
2

]
. Next,

we substitute the estimate θ̂k from (40) into (37) and obtain
the following function of the range parameter r:

pN (r) = {det[QN2(θ̂k, r)]}−1. (41)

where

QN2(θ̂k, r) = ζ
H
N (θ̂k, r)υ

H
N (θ̂k)Ĉ

H

e UnUHn Ĉe
×υN (θ̂k)ζN (θ̂k, r).

Again, by searching pN (r) over the region r ∈ [0.62(D3/λ)1/2,
2D2/λ], the corresponding range of the NF signals can be
obtained from the peaks of pN (r).

4. SIMULATION RESULTS

In this section, the performance of the proposed method
is compared with the existing methods in [4] and [9] us-
ing a ULA consisting of M = 9 (or N = 4) sensors with
d = λ/4. The impinging sources are equal power BPSK
signals, and the additive noise is assumed to be spatially

2Here, it should be pointed out that when some of the NF signals have the
same DOAs as the FF signals do, we only get K′ DOAs which are no more
than K true DOAs, namely K′ ≤ K.
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Fig. 2: RMSE versus snapshots.

white complex Gaussian, and the SNR is defined relative to
each signal. Further, we assume two NF signals are located
at (5◦, 1.9λ), (30◦, 2.6λ), and two FF signals are located at
(5◦,+∞), (−25◦,+∞), respectively. The nonzero MCCs
are [1, 0.3515+0.4656i, 0.0916-0.1218i]. We carry out t-
wo set of simulations, each compromising 500 independent
Monte Carlo trials. In the first simulation, we investigate the
RMSE of DOA and range estimates when the SNR varies
from 0 dB to 20 dB, with the number of snapshots fixed
at 500. In Fig. 1, we can see that the proposed method
outperforms the methods in [4] and [9] for DOA and range
estimation of both NF and FF sources. This is because the
proposed method has exploited the noncircular information
of mixed signals, which effectively increases the array aper-
ture to some extent. In addition, auto-calibration is applied
for the FF sources, while mutual coupling is compensated for
the NF sources in the proposed method.

In the second simulation, the SNR is set at 10dB, and the
number of snapshots varies from 100 to 1000. It is observed
from Fig. 2, as the number of snapshots increases, the pro-
posed method is always superior to the existing methods in
DOA and range estimation.

5. CONCLUSIONS

We have presented an effective method for the localization of
mixed FF and NF sources using the noncircular information
of the impinging signals under UMC. Compared with exist-
ing mixed source localization methods, the proposed one has
its superiority in the case of UMC and is capable of iden-
tifying source types reasonably. Moreover, the usual multi-
dimensional spectral search has been avoided by decoupling
the array steering matrix of NF and FF signals. As our future
work, the Cramer-Rao bound (CRB) of the problem under
consideration will be studied.
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