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ABSTRACT

This paper develops a new computationally efficient bias reduction
method for the well-known algebraic closed-form solution for time-
difference-of-arrival (TDOA) localization developed by Chan and
Ho. The noise correlation between the regressor and regressand in
the formulation of the linearized least-squares computation is the
main cause of bias problems associated with this TDOA localization
method. The bias reduction method proposed in this paper, which
we call IV-BiasRed, exploits the use of instrumental variables (IV)
to eliminate the troublesome noise correlation between the regressor
and regressand. The IV-BiasRed method is demonstrated by way of
simulations to achieve a significant bias reduction and mean-squared
error performance close to the Cramér-Rao lower bound. While pro-
ducing an estimation performance on par with the maximum likeli-
hood estimator and a recently proposed bias reduction method, the
proposed IV-BiasRed method is computationally much more effi-
cient than existing bias reduction methods.

Index Terms— Source localization, time difference of arrival,
least squares, instrumental variables, bias compensation

1. INTRODUCTION

Source localization by time difference of arrival (TDOA) has re-
ceived considerable attention in passive source localization ap-
plications thanks to its capability to locate non-cooperative emit-
ters [1–13]. The objective of TDOA source localization is to es-
timate the unknown location of a source by exploiting the TDOA
between signals received at spatially separated sensors. In particular,
each TDOA defines a hyperbolic surface as possible locations of the
source. The intersection of the hyperbolic surfaces from a number of
sensor pairs yields the source position estimate. Numerous TDOA
localization techniques are available in the literature and can be
classified into three broad categories: (i) the maximum likelihood
estimator (MLE) [6], (ii) the hyperbolic asymptote intersection so-
lutions [7–9], and (iii) the linearized least-squares solutions with
parameter constraints [1–3, 10–13].

The MLE, a widely used solution for nonlinear estimation prob-
lems, enjoys the desirable properties of aymptotic unbiasedness and
efficiency. However, the MLE does not admit a closed-form solu-
tion and must be implemented via computationally expensive nu-
merical search algorithms. In addition, the MLE is prone to diver-
gence due to the nonconvex nature of the MLE cost function for
TDOA localization. On the other hand, the hyperbolic asymptote in-
tersection solutions aim to exploit the intersection of the asymptotes
of the TDOA hyperbolae for the source position estimate. Specifi-
cally, using the hyperbolic asymptotes, the TDOA localization prob-
lem is converted into a bearings-only localization problem which can
be solved effectively via pseudolinear least-squares techniques with

closed-form solutions. However, this technique was mainly consid-
ered in the two-dimensional (2D) scenario and its extension to the
three-dimensional (3D) case is not straightforward. In addition to
the hyperbolic asymptote intersection solutions, the linearized least-
squares solutions with parameter constraint are attractive alternatives
that also provide closed-form solutions and overcome the complexity
and divergence problems of the MLE. This approach can be applied
to both 2D and 3D geometries.

The closed-form solution developed in [1] is one of the most
popular TDOA constrained least-squares solutions in the literature.
It first transforms the nonlinear TDOA measurement equations into
a set of equations that are linear in the unknown source position
by introducing a nuisance parameter, thus allowing the use of lin-
ear least-squares to estimate the solution. The dependence between
the nuisance parameter and the source location is also taken into
account to further improve the performance of the linearized least-
squares solution. However, the resulting estimate suffers from a se-
vere bias problem due to the noise correlation between the regressor
and regressand in the formulation of the linearized least-squares es-
timate [2]. To alleviate the bias problem of [1], the work in [12]
applied a constraint to the unknowns directly when solving the least-
squares minimization problem. However, this approach requires nu-
merical search. On the other hand, the approach in [13] utilized
a total least-squares (TLS) method to tackle the noise correlation
between the regressor and regressand. Unfortunately, the variance
of the TLS estimate is larger than that of the solution in [1]. Re-
cently, the work in [2] proposed two bias compensation techniques
for the solution in [2], namely the BiasSub and BiasRed methods.
In particular, the BiasSub method estimates and subtracts the bias
of the solution, while the BiasRed method resolves the bias prob-
lem by introducing an augmented solution equation and imposing a
quadratic constraint. The BiasSub method unfortunately requires the
prior knowledge of the exact TDOA noise power which may not be
available in practice. In constrast, the BiasRed method only requires
the prior knowledge of the structure of the TDOA noise covariance
matrix. However, a drawback of the BiasRed method is that it is
computationally almost twice as expensive as the original solution
in [1].

The main contribution of this paper is to propose a new com-
putationally efficient bias reduction method for the closed-form so-
lution [1] by exploiting the use of instrumental variables. In this
paper we are particularly interested in scenarios where the exact
TDOA noise covariance matrix is not available and only its struc-
ture is known a priori, which is often the case in practice. The pro-
posed method, called the IV-BiasRed method, aims to eliminate the
noise correlation between the regressor matrix and regressand vector,
which is the root cause of bias in [1], by replacing the transpose of
the regressor matrix in the normal equations with the transpose of an
instrumental variable matrix that is approximately uncorrelated with
the regressand vector. The advantage of the proposed IV-BiasRed
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method is that it is computationally much simpler than the BiasRed
method [2] while producing an estimation performance on par with
the BiasRed method [2] and the MLE. Numerical Monte-Carlo sim-
ulations are presented at the end of the paper to corroborate the per-
formance of the proposed IV-BiasRed method.

2. OVERVIEW OF TDOA LOCALIZATION

2.1. Problem Formulation

The objective of TDOA source localization is to estimate the po-
sition of a source at uo using TDOA measurements obtained from
M spatially separated sensors located at si, i = 1, 2, . . . ,M . Here,
si and uo areN×1 column vectors of Cartesian coordinates, where
N = 2 or 3 is the space dimension. The TDOA measurement at the
sensor si with respect to the reference sensor s1 is given by

ri1 = roi1 + ni1, i = 2, 3, . . . ,M (1)

where roi1 is the true TDOA defined by

roi1 = ‖uo − si‖ − ‖uo − s1‖. (2)

Here, ni1 is the additive measurement noise and ‖·‖ denotes the Eu-
clidean norm. Note that the TDOA measurement model given in (1)
and (2) is already normalized by the speed of signal propagation c.
In addition, it is a common practice to exploit one of the sensors as
the reference sensor (e.g., the sensor s1 in this case) although any
non-redundant set of M − 1 sensor pairs can be used. In this paper,
(·)o with the superscript o denotes the true noise-free version of the
matrix, vector or scalar in the argument.

Stacking M − 1 TDOA measurements for i = 2, 3, . . . ,M pro-
duces

r = ro + n (3)

where r = [r21, r31, . . . , rM1]T , ro = [ro21, r
o
31, . . . , r

o
M1]T , and

n = [n21, n31, . . . , nM1]T is zero-mean Gaussian with covariance
matrix Q. In this paper, we assume that the covariance matrix Q is
not known exactly while its structure is available a priori, which is
often the case in practice. The TDOA localization problem is stated
as estimating uo from r.

2.2. The Closed-Form Solution [1] and Its Bias

The closed-form TDOA solution in [1] consists of three stages. The
first stage uses the square of the measurement equation and intro-
duces the nuisance variable ro1 = ‖uo − s1‖ to formulate a system
of linear equations with respect to uo and ro1 . A preliminary esti-
mate of uo and ro1 is then obtained via linear least-squares estima-
tion. The second stage aims to enhance the estimation accuracy of
the first stage by exploiting the constraint relationship between uo

and ro1 . The second stage solution is mapped onto the final position
estimate in the third stage. The details of this closed-form solution
can be found in [1]. Here is a summary of the computational steps:
Stage 1:

ϕ1 = (GT
1W1G1)−1GT

1W1h1 (4)

where

ϕ1 =

[
u
r1

]
, G1 = −2


(s2 − s1)T r21
(s3 − s1)T r31

...
...

(sM − s1)T rM1

 , (5)

h1 =


r221 − sT2 s2 + sT1 s1
r231 − sT3 s3 + sT1 s1

...
r2M1 − sTMsM + sT1 s1

 , W1 = (B1QB1)−1, (6)

B1 = 2 diag{[ro2, ro3, . . . , roM ]}, roi = ‖uo − si‖. (7)

Here, the superscript T denotes the matrix transpose operator. Note
that B1 is a function of the true source location uo, which is not
available. Therefore, B1 is computed using the initial estimate of
ϕ1, denoted as ϕ̂1, which is first obtained by settingB1 to identity.
Specifically, roi in (7) is replaced by ‖ϕ̂1(1 : N)− si‖.
Stage 2:

ϕ2 = (GT
2W2G2)−1GT

2W2h2 (8)

where

ϕ2 = (u− s1)� (u− s1), G2 =

[
IN×N
1TN×1

]
, (9)

h2 =

(
ϕ1 −

[
s1
0

])
�
(
ϕ1 −

[
s1
0

])
, (10)

W2 = B−1
2 (GT

1W1G1)B−1
2 , B2 = 2 diag

{
ϕ1 −

[
s1
0

]}
. (11)

Here, � denotes the Schur product (i.e., the element-by-element
product).
Stage 3: The final position estimate is obtained by

u = Π
√
ϕ2 + s1 (12)

where Π = diag{sgn(ϕ1(1 : N) − s1)} with sgn(·) denoting the
signum function.

Note that this solution assumes that there are at least N + 2
sensors and the sensors are not located on a straight line for the 2D
scenario or on a plane for the 3D scenario.

Unfortunately, the closed-form solution summarized above suf-
fers severely from a bias problem due to the correlation between the
noise in the regressor G1 and the regressand h1 of the weighted
least-squares estimation in the first stage [2]. Specifically, the noise
correlation between G1 and h1 results in an estimation bias in ϕ1.
This estimation bias subsequently propagates to the second and third
stages, thus leading to a bias in the final position estimate u of the
third stage. Exact expressions for the estimation bias in each stage
of the closed-form solution were derived in [2] by ignoring the third
and higher-order noise terms. The bias of the closed-form solution
can be compensated by estimating and subtracting the bias in the
final position estimate u using the source position estimate and the
noisy TDOA measurements [2]. However, this requires exact knowl-
edge of the TDOA noise power and therefore is not applicable when
only the structure of the TDOA noise covariance matrix is available
as assumed in this paper.

2.3. The Bias-Reduced Closed-Form Solution [2]

To overcome the bias problem of the closed-form solution, the work
in [2] has proposed a bias-reduced closed-form solution, namely
the BiasRed method, by introducing an augmented solution equa-
tion and imposing a quadratic constraint. Specifically, the BiasRed
method only modifies the estimation in the first stage while the sec-
ond and third stages remain the same. Importantly, the BiasRed
method only requires the prior knowledge of the structure of the
TDOA noise covariance matrix. The BiasRed method [2] is sum-
marized as below.
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By introducing the augmented matrixA and vector v, (i.e.,A =

[−G1,h1] and vo =
[
ϕo1

T , 1
]T

), the minimization objective func-
tion of the first stage of the closed-form solution [1] of ε = (h1 −
G1ϕ1)TW1(h1 −G1ϕ1) becomes

ε = vTATW1Av. (13)

Now decomposing A into the true noise-free matrix Ao and
the noise term ∆A yields A = Ao + ∆A, where ∆A =

2
[
0(M−1)×N ,n, B̃1n

]
and B̃1 = diag{[ro21, ro31, . . . , roM1]}.

Substituting this into (13) and taking the expectation of ε produces
the objective function on the average as

E{ε} = vTAoTW1A
ov + vTE{∆ATW1∆A}v. (14)

where both terms are nonnegative functions of v. If E{ε} is min-
imized with respect to v, the second term vTE{∆ATW1∆A}v
steers the solution away from vo, thus leading to an estimation bias.

To overcome such a problem, the BiasRed method aims to min-
mize ε subject to the constraint that the second term of (14) is con-
stant. In addition,E{ε} = 0 at the true solution v = vo. As a result,
the problem becomes

min
v

{
vTATW1Av

}
subject to vTΩv = k (15)

where Ω = E{∆ATW1∆A}. Note that any value can be used for
the constant k because it only affects the scaling of v.

The Lagrange multiplier method can be used to solve the con-
strained minimization problem in (15), i.e.,

min
v

{
vTATW1Av + λ(k − vTΩv)

}
(16)

where λ is the Lagrange multiplier. Setting the derivative of the
argument inside the minimization in (16) with respect to v to zero
yields

(ATW1A)v = λΩv (17)

By noting that kλ is the cost to be minimized if premultiplying both
sides of (17) by vT , the solution v is the generalized eigenvector of
the pair (ATW1A,Ω) which yields the smallest generalized eigen-
value. An explicit solution for v was proposed in [2] without the
use of generalized eigen-decomposition. The solution ϕ1 is then
obtained from v by dividing the first (N + 1) elements of v by its
last element.

3. PROPOSED BIAS REDUCTION SOLUTION UTILIZING
INSTRUMENTAL VARIABLES

In this section, we propose a new alternative bias reduction method,
namely the IV-BiasRed method, based on the use of instrumen-
tal variables. Compared to the BiasRed method [2], the pro-
posed IV-BiasRed method has low computational complexity while
producing a performance almost identical to that of the BiasRed
method [2] both in terms of bias and mean-squared error.

Recall from Section 2.2 that the bias of the closed-form solu-
tion arises from the noise correlation between the regressor G1 and
the regressand h1. Motivated by this fact, the proposed IV-BiasRed
method aims to resolve the bias problem of the closed-form solution
by eliminating the noise correlation between G1 and h1 using the
idea of instrumental variables. Specifically, the normal equations of
the weighted least-squares estimation in (4)

(GT
1W1G1)ϕ1 = GT

1W1h1 (18)

are modified to

(F T1 W1G1)ϕIV
1 = F T1 W1h1, (19)

where F1 is the instrumental variable matrix [14, 15]. As a result,
the IV solution ϕIV

1 is given by

ϕIV
1 = (F T1 W1G1)−1F T1 W1h1. (20)

In theory, if the IV matrix F1 is selected so that E
{

FT
1 W1G1

M−1

}
is nonsingular and E{F

T
1 W1h1

M−1
} = 0 as M → ∞, the IV solu-

tion ϕIV
1 in (20) becomes asymptotically unbiased, i.e., E{ϕIV

1 −
ϕo1} → 0 as M →∞.

The optimal choice for the IV matrix F1 is the noise-free ver-
sion of the matrix G1, i.e., Go

1. However, being a function of the
unknown source position uo, Go

1 is not available. Instead the solu-
tion of Stage 1 can be used to construct a suboptimal IV matrix:

F1 = −2


(s2 − s1)T rIV21
(s3 − s1)T rIV31

...
...

(sM − s1)T rIVM1

 (21)

where rIVi1 = ‖ϕ1(1 : N)− si‖ − ‖ϕ1(1 : N)− s1‖.
Since the bias of ϕ1 in the first stage the closed-form solution is

already resolved by the new IV solution ϕIV
1 , the second and third

stages do not require any further bias compensation procedure. As a
result, after the IV solution ϕIV

1 is calculated from (20) using the IV
matrix F1 in (21), (8) and (12) are used to compute the final position
estimate u with ϕ1 replaced by ϕIV

1 .
For a finite number of sensors M , the IV-BiasRed method pre-

sented here is not strictly unbiased. Nevertheless, the proposed IV-
BiasRed method is capable of achieving significant bias reduction
compared to the original closed-form solution [1]. In Section 4, it is
numerically demonstrated that the performance of the proposed IV-
BiasRed method is on par with the BiasRed method proposed in [2]
by achieving the same bias as the MLE and getting very close to
the Cramér-Rao lower bound (CRLB). More importantly, the pro-
posed IV-BiasRed method requires much less computation than the
BiasRed method [2] as analytically shown in Table 1 and numeri-
cally demonstrated in Section 4.

4. SIMULATIONS

In this section, we present a performance evaluation of the proposed
IV-BiasRed method in comparison with the closed-form solution [1],
the BiasRed method [2] and the MLE using Monte Carlo simulations
in terms of bias and mean-squared error. The mean-squared error
(MSE) and bias are defined by MSE =

∑L
i=1 ‖u

(i) − uo‖2/L and
bias = ‖

∑L
i=1(u(i)−uo)‖/L, respectively, whereL is the number

of Monte Carlo runs. The MLE is implemented using 10 Gauss-
Newton iterations and initialized using the true source position. The
expression of the CRLB is given in [1]. Two simulation scenarios
from [2], as described below, are considered.

Scenario 1 (two-dimensional): A sensor array with five sensors
is considered, where the first sensor (the reference sensor) is located
at the origin [0, 0]T m while the other four sensors are uniformly
placed along a circle of radius 10 m, i.e., si = [10 cos( 2π

M−1
(i −

1)), 10 sin( 2π
M−1

(i − 1))]T m for i = 2, 3, 4 and 5. The source is
located at uo = [100 cos( 2π

32
), 10 sin( 2π

32
)]T m. The TDOA noise
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Fig. 1. Performance comparison between the proposed IV-BiasRed method versus the solution [1], BiasRed method [2] and MLE.

Table 1. Comparison of computational complexities of the Stage 1†

Algorithm Solution [1] BiasRed [2] IV-BiasRed
Multiplication (2N + 6)(M − 1)2 4(M − 1)3 + (2N + 10)(M − 1)2 (3N + 8)(M − 1)2

+(2N2 + 7N + 6)(M − 1) +(2N2 + 9N + 9)(M − 1) +(3N2 + 11N + 8)(M − 1)
+2(N + 1)2 +(4N2 + 8N + 40) +(3N2 + 7N + 3)

Division M − 1 M + 2N + 3 M − 1
Square Root M − 1 M + 1 2M − 1
Matrix Inversion 2 Inv(N+1)×(N+1) 4 InvN×N +2 Inv2×2 3 Inv(N+1)×(N+1)
†Only the complexity of the first stage is considered as the last two stages of the three methods are identical. Here, InvK×K stands for
an inversion of K ×K matrix. The analysis excludes the computation for the terms which can be precalculated such asQ−1 and sTi s.

Table 2. Averaged runtime in MATLAB
Algorithm MLE Solution [1] BiasRed [2] IV-BiasRed
Runtime∗ 3.61 1 1.94 1.24
∗normalized by the runtime of the closed-form solution [1].

covariance matrix is set to Q = %(I + 1T )/2 where % is the noise
power. Here, I is the identity matrix and 1 is the matrix of unity.
At a given signal-to-noise ratio (SNR) value, the noise power % is
computed according to (31) of [13] multiplied with c2, where c =
3× 108 m/s. Here, 10,000 Monte Carlo runs are carried out.

Scenario 2 (three-dimensional): A total of 2000 localization
geometries are randomly generated according to the uniform distri-
bution. Eight sensors are randomly allocated within 100 m from the
origin, while the source is randomly placed with a distance from the
origin in between 100 m and 600 m. The MSE and bias are first com-
puted over L = 1,000 Monte Carlo run for each geometry and then
averaged over all 2000 geometries to obtain the final MSE and bias.
The TDOA noise covariance matrix is set toQ = σ2

r(I + 1T )/2.
Fig. 1 compares the bias and MSE performance of the proposed

IV-BiasRed method versus those of the closed-form solution [1], the
BiasRed method [2] and the MLE for the two simulated scenarios. It
is apparent the closed-form solution [1] exhibits a bias much larger
than that of the MLE as expected. Moreover, the bias of the closed-
form solution [1] agrees with its theoretical bias value derived in [2].
On the other hand, the proposed IV-BiasRed method and the Bi-
asRed method produces an almost identical bias performance which
is much lower than the bias of the closed-form solution [1]. In addi-
tion, the bias performance of the IV-BiasRed and BiasRed methods
is very close to that of the MLE. This observation demonstrates the
capability of the proposed IV-BiasRed method to achieve the bias as

governed by the nonlinear nature of the TDOA localization problem.
In addition, Fig. 1 also demonstrates the optimum performance

of the proposed IV-BiasRed method in term of the MSE perfor-
mance (i.e., exhibiting a MSE almost identical to those of the Bi-
asRed and MLE and closely achieving the theoretical CRLB) before
the threshold effect occurs at SNR = −25 dB in Scenario 1 and at
20 log(σr) = −5 in Scenario 2.

It is important to note that, although the proposed IV-BiasRed
method exhibits a comparable performance with the BiasRed
method [2] and the MLE, it requires much less computation than
the BiasRed method and the MLE. It is observed from Table 2
that the proposed IV-BiasRed method is only 24% slower than the
closed-form solution [1] due to the additional IV estimation, while
the BiasRed method [2] and the MLE require 94% and 261% longer
runtimes compared to the closed-form solution [1] respectively.

5. CONCLUSION

This paper has presented a computationally efficient bias reduc-
tion technique, namely the IV-BiasRed method, for the closed-form
TDOA source localization solution [1]. The proposed IV-BiasRed
method exploits the use of instrumental variables to eliminate the
noise correlation between the regressor matrix and regresand vector,
which is the main cause of bias for the closed-form solution in [1].
It was demonstrated via Monte Carlo simulations that the proposed
IV-BiasRed method is capable of lowering the bias of the closed-
form solution [1] to a level as governed by the nonlinear nature of
the TDOA localization problem. While achieving bias and MSE
performance comparable with those of the BiasRed method [2] and
the MLE, the main advantage of the proposed IV-BiasRed method
lies in its simplicity and low computational complexity.
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