
IMPACT OF MICROPHONE ARRAY CONFIGURATIONS
ON ROBUST INDIRECT 3D ACOUSTIC SOURCE LOCALIZATION

Elizabeth Vargas, Keith Brown

Heriot-Watt University
Edinburgh, United Kingdom

Kartic Subr

University of Edinburgh
Edinburgh, United Kingdom

ABSTRACT

Acoustic source localization (ASL) is an important problem.
Despite much attention over the past few decades, rapid and
robust ASL still remains elusive. A popular approach is to
use a circular array of microphones to record the acoustic
signal followed by some form of optimization to deduce the
most likely location of the source. In this paper, we study
the impact of the configuration of microphones on the accu-
racy of localization. We perform experiments using simu-
lation as well as real measurements using a 72-microphone
acoustic camera which confirm that circular configurations
lead to higher localization error than spiral and wheel config-
urations when considering large regions of space. Moreover,
the configuration of choice is intricately tied to the optimiza-
tion scheme. We show that direct optimization of well known
formulations for ASL yield errors similar to the state of the
art (steered response power) with 6× less computation.

Index Terms— 3D acoustic source localization, micro-
phone array configuration

1. INTRODUCTION

The problem of estimating the 3D position of objects is called
localization. Despite the advancement in localisation using
visual features, the use of audio sensing has important ad-
vantages such as reliability under poor illumination, inexpen-
sive sensing equipment and the use of signal processing (1D)
tools. There have been attempts to use audio localization in
robotics [1] and in scene understanding [2]. Acoustic source
localization (ASL) is typically achieved by leveraging known
discrepancies in measurements of the emitted signal at mul-
tiple locations. ASL algorithms may exploit differences in
time, amplitude or both.

Some approaches to ASL, such as Steered Response
Power (SRP) [3, 4], directly solve for the most likely po-
sition of the source amongst a grid of candidate locations.
‘‘Indirect” methods first estimate the times of arrival (TOA)
at the sensors (microphones) or time differences of arrival
(TDOA) across pairs of microphones and then use this infor-
mation to infer the source position via multilateration [5, 6].
Although indirect methods are simpler to express as a least

squares optimization [7], the resulting objective function is
non-convex and often does not lend itself to an analytical
solution. Various reformulations of these methods using
weighted least squares, convex constrained least squares [8],
total weighted least squares [9] and weight constrained total
least squares [10] have been analyzed. Direct methods are
believed to be more robust to noise and reverberation [3].

A uniform circular array of microphones[11, 12] along
with a ring configuration [13] is a common choice for taking
measurements since azimuthal angles to sources are consid-
ered more important than elevation. The advantage of acous-
tic cameras with such arrays is that they can focus on spe-
cific targets [14, 15], which is useful for speech processing.
The resolution in elevation has recently been shown to be im-
proved by using a 2.5D circular array [16]. While there have
been a few results examining the use of spherical arrays, mul-
tiple spheres [17], randomly placed microphones [18, 19] and
spiral configurations [20], there is little analysis of the impact
of the geometric structure of the array on particular optimiza-
tion algorithms for ASL.

We adopt an optimization (sequential least squares pro-
gramming) approach for indirect ASL. We focus on localiz-
ing a single source, but other work towards estimating TDOA
for multiple sources is directly applicable. Although the ob-
jective function we choose is non-linear and non-convex, we
show using simulation and real data that the method is robust
to noise and reverberation. Our experiments verify that it is
comparable to SRP for real data while being 6× more effi-
cient to compute. Using this optimization scheme, we study
the localization error resulting from different geometric struc-
ture for the microphone array. Our results show that circular
arrays produce the highest errors (across space) and are there-
fore least desirable.

2. OBJECTIVE FUNCTION AND OPTIMIZATION

Consider a source at location s that emits an acoustic signal at
some arbitrary time t∗. Let the measurements of the emitted
sound be recorded by an array of M microphones located at
mi, i = 1, 2, ...,M and the times taken by the signal to travel
from s to mi be ti. If the distance between the source and the
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Rel. Err % Time in min Rel. Err % Time in min Rel. Err % Time in min

chirp 14.7 (25.9) 3 (0.2) 14.2 (25.9) 0.5 (0.01) 12.1 (23.2) 4.5 (0.03)
gunshot 11.0 (13.3) 2.58 (0.2) 9.6 (12.8) 0.4 (0.02) 6.4 (3.5) 2.4 (0.02)
dogbark 16.0 (28.5) 2.49 (0.1) 58.9 (38.8) 0.4 (0.02) 48.5 (44.6) 2.4 (0.02)
speech 13.2 (21.1) 2.63 (0.1) 15.2 (23.5) 0.4 (0.02) 12.9 (22.5) 2.5 (0.02)

(a) Setup (b) Errors and computation time comparison across all microphone configurations

Fig. 1. (a) Our setup and coordinate system. (b) Table comparing errors and time for SRP with TDOA optimization using 100
of the C72

2 mic pairs (middle) and using all pairs. Standard deviations are shown within parantheses.

ith microphone is di ≡ ‖mi − s‖, then ti = di/c+ t∗ where
c is the speed of sound in air and t∗ is not generally known.
Time of arrival In the case that the times of arrival at the
microphones are measured as t̃i, we pose the ASL problem
as one of jointly determining s and t∗ as

O1 : arg min
s,t∗

√√√√ M∑
i=1

(t̃i − ti)2 (1)

Time Difference of Arrival (TDOA) Another possibility is
to note the difference in measured times between a pair of mi-
crophones, τ̃ij ≡ t̃i − t̃j , or TDOA. The literature is rich in
methods to estimate TDOA. We choose the popular General-
ized Cross-Correlation Phase Transform (GCC-PHAT) [21].
Then, we perform ASL by optimizing [7]:

O2 : arg min
s

√√√√ M∑
i=1

M∑
j=1

(
τ̃ij − τij

)2
, (2)

where τij = (ti − tj).
For both formulations O1 and O2, we know that the

solution is constrained by the room dimensions, so we sup-
ply these constraints as linear inequalities. We solve the
constrained non-linear optimization using Sequential Least
Squares Programming (SLSQP) which is an interative proce-
dure. In each iteration, a constrained quadratic programming
sub-problem is built so that the chain of solutions converges
to a local mininum [22]. Each subproblem replaces the ob-
jective function with a local, quadratic approximation subject
to local affine approximations of the constraints. We used a
Broyden-Fletcher-Goldfarb-Shanno (BFGS) approximation
to update the Hessian matrix required for the local quadratic
approximation and chose the step length using an L1 test
function. The optimizer used to solve each subproblem is
a modified version of NNLS [23]. We used the following
parameters as inputs to the optimizer: iterations = 1500,
accuracy = 1e-20, epsilon = 1.49e-08.

2.1. Experiments

We performed experiments using an gfai tech AC Pro Acous-
tic Camera system consisting of 72 microphones sampled at
192kHz. We used three different microphone configurations:
ring, wheel and spiral, spanning the same area. Using each
configuration, we measured recorded sounds played by a Bose

Soundlink Bluetooth Mobile Speaker II, Model 404600 in five
different calibrated positions within a room of size 12m ×
7m × 3m. The speaker was positioned, using a tripod, to be
on the plane y = −0.32 for all five positions A, B, C, D and
E. For each position we acquired three recordings. Fig. 1
illustrates the setup. We repeated the experiments for 4 dif-
ferent audio signals [24]: chirp, gunshot, dogbark and speech.
Simulation: noisy TOA and TDOA We tested the proposed
optimization by evaluating the relative error in localization
for different simulated degrees of noise σ in the estimated
TOA and TDOA values. To enable comparison across multi-
ple sources locations, we express σ for each source location
as a percentage of the time taken for sound to travel from s
to the center of the microphone array O. We use a Gaussian
model for the noise in simulated TOA t̃i = ti + η and for
TDOA τ̃ij = τ + η where

η ∼ N
(
0,

σ

100

‖s−O‖
c

)
. (3)

We measure relative error, expressed as a percentage of the
distance from the source to the camera, as the evaluation met-
ric for the accuracy of localization:

error(%) =
‖s− s̃‖
‖s−O‖

∗ 100, (4)

where s̃ is the source location estimated by the optimization.
We compared optimizations for TOA and TDOA with

multilateration [6]. Fig. 3 depicts plots of relative localiza-
tion error (Y-axis) as the noise in the simulation is increased
(X-axis). We performed two versions of the experiment:
one assuming that the microphones and the sound source
are synchronised (t∗ = 0 in Fig. 3a), and one without that
assumption by setting t∗ = 0.01s.
Simulation: microphone configuration We estimated the
localization error at different points in space, obtained via
simulation. For each source position on a grid, we esti-
mated the localization errors for three microphone config-
urations. The three configurations were identical to those
used for real measurements with our acoustic camera, us-
ing 72 microphones. Each configuration results in different
TOA and TDOA values, due to the different microphone
positions. When noise is added to these TOA and TDOA
values, each configuration reveals a characteristic heat-map
for localization error over space. Fig. 4 visualizes these
heatmaps for σ = 100% simulated error, along with the
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Fig. 2. Relative localization error for increasing noise at three source locations: P1: (-2,-1,4), P2: (-1,0.5,3), P3: (0.4,0.7,1.05).
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(a) synchronized (t∗ = 0) (b) unknown t∗ (10ms)
Fig. 3. Relative localization errors using O1 (TOA), O2

(TDOA) and multilateration [6] (a) speaker is synchronized
with microphones and (b) time of emission is unknown.

corresponding error histograms. The errors were averaged
over 100 trials for each grid point. We chose a grid over
x = [−2, 2], z = [0, 4] and y = −0.32, with a resolution of
10 cm, so that it matches our experiments with real data. For
three positions P1 ≡ (−2,−1, 4), P2 ≡ (−1, 0.5, 3) and
P3 ≡ (0.4, 0.7, 1.05), we plotted error as a function of noise
for four different microphone configurations (Fig. 2).
Real Data: Comparison with SRP [4] We used opti-
mization scheme O2 to localize a speaker placed in five
positions A ≡ (2.0,−0.32, 0.5), B ≡ (1.5,−0.32, 2.0),
C ≡ (0.0,−0.32, 1.5), D ≡ (−1.5,−0.32, 1.0) and E ≡
(−1.5,−0.32, 3.5). Fig. 5 plots relative errors (Y-axes) for
three different microphone configurations (X-axes) at the
chosen five locations (columns). The three rows of plots cor-
respond to results obtained using SLSQP, SRP and Bayesian
optimization [25] respectively. Errorbars (standard deviation)
are shown with black lines on top of the bars.

2.2. Results and discussion

Microphone configurations Our results suggests that circu-
lar (ring configuration) arrays perform worse than spiral or
wheel configurations when considering relative localization
error over a wide range of positions. Our simulation results
(Fig. 4) show regions (top view) that are error prone when
using circular arrays. This is also true for our real measure-
ments (Fig. 5), where the results obtained for position C are
worse for ring than for wheel or spiral using any of the three
localization techniques. The yellow bars in the first row show
that the errors observed with real data correspond to errors
obtained with about 10% noise in our simulation.

Comparison with multilateration Our experiments showed
that both optimization strategies O1 and O2 result in lower
relative errors than state of the art multilateration [6]. This
is particularly true when the time of emission of the signal is
unknown and when the emitter is not synchronized with the
microphones (t∗ 6= 0). When t∗ = 0, our implementation
of the multilateration algorithm has similar accuracy to opti-
mizing O1 (TOA). Our proposed approach to optimizing O2

(TDOA) has the least relative errors and remains unaffected
by t∗.
Comparison with SRP A common criticism of indirect
methods is that the optimization is not as robust as direct
methods such as SRP. However, our results (Table 1) show
that our localization error is comparable to SRP but is more
efficient. We used an efficient implementation of SRP that
leverages stochastic region contraction [4] and a naı̈ve imple-
mentation of our optimization in python. In both cases, the
accuracy of the proposed optimization may also be traded for
performance.
Accuracy vs performance One way to approximate the lo-
calization is to modify the nested summation in O2 to con-
sider only some of the microphone pairs. We studied conver-
gence plots of localization error for different source positions,
as the number of microphone pairs is increased from just 1
pair to all pairs (C72

2 ). The error generally drops below 10%
for 100 mic pairs (see Table 1 for computation times), except
for the dogbark signal. Figure 6a plots relative error averaged
across spatial locations for all four test signals using only 100
microphone pairs.
Bayesian optimization We tested a Bayesian optimizer with
O2 as its loss function (κ = 1). This took an order of magni-
tude longer than SQLSP and the resulting errors were larger.
We tested with various degrees of the κ parameter to trade-
off exploitation versus exploration. The plot (Fig. 6b) shows
that exploitation (κ = 1) performs better than exploration
(κ = 10) in most cases. The number of iterations and toler-
ance were set so that the optimizer converged to the reported
solutions, suggesting that the problem is not due to multiple
local minima.
Limitation One drawback of indirect localization achieved
by minimizing O2 is its dependency on the estimated TDOA
values. Although our results show that GCC-PHAT is accu-
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Fig. 4. Relative error percentages visualized as heatmaps obtained using simulations, at 100% noise, for a 2m× 2m room. 100
estimates were averaged for the error estimate at each grid position. The insets show the distributions of errors as histograms.
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(a) A: (2.0,-0.32,0.5) (b) B: (1.5,-0.32,2.0) (c) C: (0.0,-0.32,1.5) (d) D: (-1.5,-0.32,1.0) (e) E: (-1.5,-0.32,3.5)

Fig. 5. Localization Error using SQLP and simulation (top row) SRP (2nd row) and Bayesian Optimization (3rd row)

rate enough to yield localization errors comparable to SRP,
the former performs worse when dealing with signals with
repeating patterns such as the barking of a dog (red bar in
Fig. 5). Our localization was more robust to reverberation
(when the source was placed at room boundaries) than to
repetitive macro-structures. Perhaps using full signal corre-
lation matrices, as adopted by spectral estimation techniques,
would resolve this problem.

3. CONCLUSIONS

We have shown that direct optimization of the well known
formulation for ASL yields error similar to the state of the art
(SRP) with 6 times less computation. Moreover, we showed
using both simulation and real data that the method is robust
to noise and reverberation. Our results showed that circular
arrays are least desirable configuration. In the future we plan
to perform further experiments in a wide range of scenarios
to generalize the ring arrays’ performance limitations.
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