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ABSTRACT

This article examines the problem of tracking NLOS targets
by exploiting multipath information measured by an urban
around-the-corner radar. Due to the non linearity relationship
between target position and multipath delays and the com-
plexity of the multipath measurement model, a particle fil-
ter is considered. It samples separately the target state (po-
sition and velocities) and the multipath amplitudes thanks to
an appropriate importance density function. GLRT particle
filter, a special case of the proposed particle filter, is shown
to provide the most efficient localization results. Simulations
demonstrate the ability of the particle filter to correctly esti-
mate the target location and the improvement of localization
performance compared to a multipath localization algorithm
without tracking.

Index Terms— around-the-corner radar, multipath ex-
ploitation, NLOS target, particle filter, urban radar

1. INTRODUCTION

Locating targets in urban environments is a quite recent topic
in radar applications. The presence of buildings creates
shadow areas in which targets are not in direct line of sight
(NLOS) of the radar. However, targets in these NLOS areas
can be reached by different paths produced by reflections on
surrounding surfaces. These multipaths generally present a
challenge in classic applications. For instance, they produce
frequency selective channels in telecommunication applica-
tions. However, in urban radar application, these multipaths
represent an opportunity as they may be exploited to locate
and track NLOS targets.

This around-the-corner radar application has been studied
only since a few years, first papers focusing on the applicabil-
ity of such a detection behind corners [1, 2, 3]. Then, in [4],
the authors proposed a detection and localization algorithm
and applied it to experimental data obtained by a portable
radar. They developed a multipath subspace matched filter
based on a propagation model enabling to predict the multi-
path delays for any considered position. The algorithm was

shown to provide promising results in single target localiza-
tion. Most of the time, the maximum likelihood (ML) esti-
mator of the target position is indeed close to the real target
position. However, the main problem of the algorithm was the
appearance of high ambiguities which could generate ghosts
or strong biases affecting localization performance. This phe-
nomena can be observed in other works dealing with multi-
path exploitation. For example, in [5], where an urban Syn-
thetic Aperture Radar is studied, the two proposed multipath
exploitation techniques also provided ambiguous images; and
in [6], for the purpose of tracking targets in range-time do-
main with multipath exploitation, the proposed approach was
not able to disambiguate two multipath tracks with similar
range. The ambiguities presented in several works due to mul-
tiplicity of urban scenes motivated us to develop a tracking al-
gorithm to mitigate them and thus improve target localization.
Note that if tracking in urban environment has been investi-
gated in [7] with an airborne radar, thus with a radar located
far away and above the urban scene, or in [8] using multisen-
sors in the urban scene, their purpose was not to mitigate the
ambiguities inherent to the multipath propagation.

In the present article, we deal with the problem of track-
ing target in NLOS by exploiting multipaths in urban envi-
ronment with a single radar. Our purpose is to exploit the dy-
namics of the target to alleviate localization ambiguities. In
this context, Kalman type filters cannot be considered since
the measurement equation is non linear. In particular, we will
see here that the measurement equation depends on the target
state itself in a very complex ways as the number of paths de-
pends on the location of the target! We thus propose to use
a particle filter to deal with the non linearity of the measure-
ment model and to handle the multipath propagation model.
Another challenge raised by the localization problem in urban
environment is the modelization of the measurement itself.
First, to easily take into account the information provided by
the different multipaths, the proposed particle filter considers
raw radar data, as in Track-Before-Detect settings [9]. Sec-
ond, due to the complexity of the propagation in this environ-
ment, it is not realistic to suppose that the complex amplitudes
of the different paths are known or can be simply modeled. To
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Fig. 1: Simulated urban intersection. The target position can
be located anywhere in the hatched area.

solve this problem, we propose a particle filter that samples
separately the target state (position and velocities) and these
amplitudes thanks to an appropriate importance density func-
tion. Simulations will show that the proposed particle filter
improves the localization performance compared to the local-
ization algorithm proposed in [4]. Furthermore, thanks to a
particular way of sampling the multipath amplitudes, we ob-
tain a particle filter which provides the most efficient result
of localization. We call this filter GLRT (Generalized Likeli-
hood Ratio Test) particle filter.

The article is organized as follows. In section 2, state and
measurement models will be presented. In section 3, we will
describe the proposed particle filters. Finally, in section 4,
simulations will be carried out and then, results from this sim-
ulation will be presented and analyzed.

2. MODELING

2.1. State model

Let us denote by xk the target state composed of its positions
(xk, yk) and its velocities (ẋk, ẏk). The target trajectory can
be described by a classic linear equation:

xk =


1 0 Tr 0
0 1 0 Tr
0 0 1 0
0 0 0 1

xk−1 + bk,

where bk is the state noise assumed to be white gaussian with
known covariance matrix.

2.2. Measurement model

In the following, we assume that all reflections are specular,
and that diffraction effects can be neglected. We also assume
that strong fixed echoes produced by the surrounding build-
ings and objects have already been removed, for instance by
using [10], so that the only received echoes are backscattered
by nearby moving targets.

After cancellation of fixed echoes and taking into account
the multipath propagation, the signal ζk(t) at discrete time k
received by the radar can be written as:

ζk(t) =

M(xk,yk)∑
j=1

αj(xk, yk)s(t− τj(xk, yk)) + n
′

k(t),

where M(xk, yk) is the number of multipath returns for a tar-
get located at (x, y), τj(x, y) is the delay of the j-th return
for this target and αj(xk, yk) is its complex amplitude. Note
that for the purpose of simplicity, we will not exploit here
Doppler-shifts of the different multipaths. Letting z(t) denote
the output of the matched filter applied to ζ(t), we have:

zk(t) =

M(xk,yk)∑
j=1

αj(xk, yk)r(t− τj(xk, yk)) + nk(t),

where r(t) is the autocorrelation of s(t). Taking N snapshots
(ti = iTs = i/fs, where fs is the sample frequency), the
previous equation can then be written as

zk = R(xk, yk)α(xk, yk) + nk, (1)

where z = [z(t1) z(t2) ... z(tN )]T ,

n = [n(t1) n(t2) ... n(tN )]T ,

α = [α1 α2 ... αM(x,y)]
T ,

r(t− τ) = [r(t1 − τ) r(t2 − τ) ... r(tN − τ)]T ,

R(x, y) = [r(t−τ1(x, y)) r(t−τ2(x, y))... r(t−τM(x,y)(x, y))].

The matrix R(xk, yk) depends on the position of the tar-
get and is provided by a simple ray tracing model using an ap-
proximate knowledge of the scene. The amplitudes α(xk, yk)
also depend on the position of the target. We assume here
that these amplitudes are unknown and deterministic. For
the purpose of simplicity, R(xk, yk) is replaced by Rk and
α(xk, yk) by αk for the rest of the article but we shall not
forget that they depend on the target state. The observation
model can thus be provided by:

zk = Rkαk + nk,

where the sizes of Rk and αk depend on the state xk.

3. GLRT PARTICLE FILTER

The amplitudes αk depend on the target position at the instant
k (xk, yk) and are normally difficult to model because of un-
known environment parameters such as propagation losses,
reflection on target/walls coefficients, etc. Thus, we propose
to integrate these amplitudes in the particle state in order to
sample them as well as the target state, following a classic
particle filter strategy [11]. Let us denote by Xi

k the state of
particle i composed of its positions and velocities xik and the
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amplitudes αik of the different multipaths coressponding to
the particle position:

Xi
k =

[
xiTk , (α

i
k)
T
]T

=
[
xik, y

i
k, ẋ

i
k, ẏ

i
k, (α

i
k)
T
]T
.

Following the classic particle filter framework, particles
are propagated from the instant k − 1 to the instant k in two
steps. First, the state of the particles at the instant k are drawn
from the importance density q(Xi

k|Xi
k−1, z1:k). Then the un-

normalized weights ω̃ik for the particle i can be calculated ac-
cording to:

ω̃ik � ωik−1

p(zk|Xi
k)p(X

i
k|Xi

k−1)

q(Xi
k|Xi

k−1, z1:k)
,

where ω̃ik−1 are the particle weights at instant k − 1 and the
likelihood function p(zk|Xi

k) is provided by:

p(zk|Xi
k) � exp

(
−
∥∥zk −Ri

kα
i
k

∥∥2
σ2

)
,

supposing that the noise vector nk is complex circular white
gaussian with covariance matrix σ2I.

A classic particle filter would sample the target ampli-
tude according to the prior model. However, this strategy
presents two drawbacks: first it assumes a coherent behav-
ior of the amplitude along time enabling to describe it via
a Markov chain model. We rather propose here to consider
that the prior model for the amplitudes is αik = ρike

jφi
k with

ρik ∼ U[0,ρmax] and φik ∼ U[0,2π], where U[a,b] is the uni-
form distribution over the interval [a, b], thus accepting no
coherence of the amplitude along times. Second, it does not
enable to retrieve information from the current measurement,
although it is well known that the optimal importance density
is p(Xk|Xk−1, zk) [12] . Here, we propose to factorize the
importance density in the following way:

q(Xi
k|Xi

k−1, z1:k) = q(αik|xik, zk)p(xik|Xi
k−1).

This means that the position and velocity of the target are
sampled according to the state equation, while the amplitudes
of different paths are sampled conditionally to the target posi-
tion and velocities at the instant k and the measurement at the
instant k. This allows to retrieve some information from the
current measurement. A possible choice for q(αik|xik, zk) is:

q(αik|xik, zk) ∼ N (α̂ik, σ
2
αI[M(xi

k,y
i
k)]

), (2)

where α̂k is the ML estimation of αk from the measurement
zk conditional to xk, which is given by:

α̂k = (RH
k Rk)

−1RH
k zk,

and σ2
α is an adjustable parameter. Under these prior hypothe-

ses and choice of the importance density, the unnormalized
weight of particles i at instant k can be found as:

ω̃ik �
ωik−1

q(αik|xik, zk)
exp

(
−
∥∥zk −Ri

kα
i
k

∥∥2
σ2

)
(3)
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Fig. 2: Comparison of particle filters (PF) with different σα
and the localization algorithm without tracking algorithm.

where αik is sampled from the distribution N (α̂ik, σ
2
α

I[M(xi
k,y

i
k)]

) and q(αik|xik, zk) is calculated from (2). In the
extreme case when σα tends to 0, αik is directly given by the
ML estimator of αk. Then dividing Eq.(3) by the likelihood
of the measurement under hypothesis that no target is present
in the scene, which is the same constant for all particles, we
obtain a GLRT particle filter [13]. Eq.(3) becomes:

ω̃ik � ωik−1L(zk|Xi
k), (4)

where L(zk|Xi
k) is the likelihood ratio for the detection test

testing the presence of a target with state Xi
k.

Finally, the classic estimator of the target position is pro-

vided by: x̂k =
1

Np

Np∑
i=1

wikx
i
k and ŷk =

1

Np

Np∑
i=1

wiky
i
k.

4. SIMULATION

The particle filter localization performance is evaluated by
simulations for the simple urban intersection scenario shown
in Fig. 1. The radar is placed at location (0,2). The bandwidth
of the signal s(t) transmitted by the radar is 300 MHz, giving
a range resolution of 0.5 m. For each NMC = 1000 Monte
Carlo simulations performed, Np = 1600 particles are uni-
formly initialized in the area of interest (hatched area in Fig.
1). The matrix R corresponding to each particle at the instant
k can be found by a ray tracing model. However, computing
matrices R for all the particles for each instant is very costly.
Then, in order to accelerate the process, we propose to pre-
compute the matrices R for small cells discretized from the
area of interest. A particle in a cell is assumed to have the ma-
trix R computed at the center this cell. In the simulation, we
discretize the area into 0.25 mx0.25 m cells, which is equal
to half of the radar range resolution. The target moves from
(32, 16.25) to (35; 16.25) at constant velocity: ẋk = 2 m/s
and ẏk = 0. The sample rate for the particle filter is set to 50
ms, so 30 iterations are executed along the target trajectory.
To evaluate the particle filter performance, the signal-to-noise
ratio (SNR) of the target is set to 10 dB for all positions of its
trajectory.

Fig. 2 shows the Root-Mean-Square Error (RMSE) ob-
tained for the proposed particle filter with different values of
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(b) Particle filter result

Fig. 3: Localization and particle filter results when the target
is at (32, 16.25) (first iteration). The black circles indicate the
true target position.

σα. From this figure, it appears that the smallest values for
σα provide the best performances. As expected, the GLRT
particle filter described by Eq. (4) is the most efficient. These
curves are also compared to the result of the localization al-
gorithm proposed in [4]. As mentioned in [4], the localization
algorithm could rise strong ambiguities because of the geom-
etry of the scene. Especially in this simulation, when the SNR
of the target is low, these ambiguities can easily yield a strong
bias and generate large errors in localization. This explains
why the RMSE of the localization algorithm is quite signifi-
cant, between 2 and 4 m. When applying the proposed par-
ticle filter, we observe a considerable improvement of RMSE
after only a few iterations. This improvement proves that the
particle filter succeeds to take into account the dynamics of
the target to alleviate the ambiguities.

To illustrate this ambiguity alleviation, we show in Fig.
3(a) the output image of the localization algorithm, and in
Fig. 3(b) the weighted particles before the resampling step
when the target is at location (32, 16.25), the first position
of its trajectory. At the first iteration, the particle filter pro-
vides a similar ambiguity image as the localization algorithm
because at this time, the particle filter shares the same infor-
mation with the localization algorithm. Fig. 4 shows a similar
comparison when the target is in the midpoint of its trajectory.
The localization algorithm still shows high ambiguities while
the particle filter provides a remarkable ambiguity reduction.
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Fig. 4: Localization and particle filter results when the target
is at (33.5, 16.25) (16th iteration). The black circles indicate
the true target position.

Most particles are concentrated around the true target posi-
tion.

5. CONCLUSION

In this article, we proposed a particle filter for the problem of
tracking a single NLOS target in around-the-corner radar. A
specific urban signal model was provided in order to take into
account multipath propagation. In this model, due to the com-
plexity of the propagation environment, it was assumed that
the multipath amplitudes could not be simply inferred from
any available information. To resolve this problem of com-
plex measurement modelization, the importance density was
decomposed in two parts: the first part enabled to resample
the target position and velocity by the state equation; and the
second allowed to take into account the current measurement
to sample the unknown multipath amplitudes. For the limit-
ing choice of importance density where the multipath ampli-
tude variance tends to 0, we obtained the GLRT particle filter
that was shown by simulation to provide the most efficient lo-
calization results. Simulations also showed that applying the
particle filter decreased ambiguities arising in urban multi-
path localization, and thus improved localization performance
compared to the localization algorithm without filtering.
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